Properties

Label 1950.m
Number of curves $1$
Conductor $1950$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("m1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 1950.m

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1950.m1 1950k1 \([1, 0, 1, 49, 1298]\) \(34295/1872\) \(-731250000\) \([]\) \(960\) \(0.38054\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 1950.m1 has rank \(1\).

Complex multiplication

The elliptic curves in class 1950.m do not have complex multiplication.

Modular form 1950.2.a.m

sage: E.q_eigenform(10)
 
\(q - q^{2} + q^{3} + q^{4} - q^{6} + q^{7} - q^{8} + q^{9} - 3q^{11} + q^{12} - q^{13} - q^{14} + q^{16} + q^{17} - q^{18} - 8q^{19} + O(q^{20})\)  Toggle raw display