Properties

Label 1950.j
Number of curves $1$
Conductor $1950$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("j1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 1950.j

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1950.j1 1950f1 \([1, 0, 1, -8991, -349262]\) \(-3214683778008145/238496514048\) \(-5962412851200\) \([]\) \(3864\) \(1.2002\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 1950.j1 has rank \(0\).

Complex multiplication

The elliptic curves in class 1950.j do not have complex multiplication.

Modular form 1950.2.a.j

sage: E.q_eigenform(10)
 
\(q - q^{2} + q^{3} + q^{4} - q^{6} - q^{8} + q^{9} + 4q^{11} + q^{12} - q^{13} + q^{16} - q^{18} + q^{19} + O(q^{20})\)  Toggle raw display