Properties

Label 1950.e
Number of curves $1$
Conductor $1950$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("e1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 1950.e

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1950.e1 1950c1 \([1, 1, 0, 50, 250]\) \(34295/78\) \(-30468750\) \([]\) \(840\) \(0.12010\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 1950.e1 has rank \(0\).

Complex multiplication

The elliptic curves in class 1950.e do not have complex multiplication.

Modular form 1950.2.a.e

sage: E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} + q^{6} + 4q^{7} - q^{8} + q^{9} + 4q^{11} - q^{12} - q^{13} - 4q^{14} + q^{16} + 4q^{17} - q^{18} + 7q^{19} + O(q^{20})\)  Toggle raw display