Properties

Label 1950.d
Number of curves $2$
Conductor $1950$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("d1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 1950.d

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1950.d1 1950d2 \([1, 1, 0, -88075, 9992125]\) \(38686490446661/141927552\) \(277202250000000\) \([2]\) \(17920\) \(1.6317\)  
1950.d2 1950d1 \([1, 1, 0, -8075, -7875]\) \(29819839301/17252352\) \(33696000000000\) \([2]\) \(8960\) \(1.2852\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 1950.d have rank \(0\).

Complex multiplication

The elliptic curves in class 1950.d do not have complex multiplication.

Modular form 1950.2.a.d

sage: E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} + q^{6} + 4q^{7} - q^{8} + q^{9} - 6q^{11} - q^{12} - q^{13} - 4q^{14} + q^{16} + 4q^{17} - q^{18} + 2q^{19} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.