Properties

Label 1936l
Number of curves $2$
Conductor $1936$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("l1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 1936l

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
1936.a2 1936l1 [0, 1, 0, -480, 3892] [] 384 \(\Gamma_0(N)\)-optimal
1936.a1 1936l2 [0, 1, 0, -4880, -514604] [] 4224  

Rank

sage: E.rank()
 

The elliptic curves in class 1936l have rank \(1\).

Complex multiplication

The elliptic curves in class 1936l do not have complex multiplication.

Modular form 1936.2.a.l

sage: E.q_eigenform(10)
 
\( q - 2q^{3} + q^{5} - 2q^{7} + q^{9} - q^{13} - 2q^{15} + 5q^{17} + 6q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 11 \\ 11 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.