# Properties

 Label 193600s Number of curves 2 Conductor 193600 CM no Rank 1 Graph

# Related objects

Show commands for: SageMath
sage: E = EllipticCurve("193600.t1")

sage: E.isogeny_class()

## Elliptic curves in class 193600s

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
193600.t2 193600s1 [0, 1, 0, -49408, -4108062] [2] 1105920 $$\Gamma_0(N)$$-optimal
193600.t1 193600s2 [0, 1, 0, -125033, 11395063] [2] 2211840

## Rank

sage: E.rank()

The elliptic curves in class 193600s have rank $$1$$.

## Modular form 193600.2.a.t

sage: E.q_eigenform(10)

$$q - 2q^{3} - 4q^{7} + q^{9} - 4q^{13} + 4q^{17} - 4q^{19} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the Cremona numbering.

$$\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with Cremona labels.