# Properties

 Label 193600gf Number of curves $2$ Conductor $193600$ CM no Rank $0$ Graph

# Related objects

Show commands for: SageMath
sage: E = EllipticCurve("193600.bf1")

sage: E.isogeny_class()

## Elliptic curves in class 193600gf

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
193600.bf2 193600gf1 [0, 1, 0, 576767, -63794337] [] 3649536 $$\Gamma_0(N)$$-optimal
193600.bf1 193600gf2 [0, 1, 0, -10071233, -12639082337] [] 10948608

## Rank

sage: E.rank()

The elliptic curves in class 193600gf have rank $$0$$.

## Modular form 193600.2.a.bf

sage: E.q_eigenform(10)

$$q - 2q^{3} - 2q^{7} + q^{9} + 5q^{13} - 3q^{17} - 2q^{19} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the Cremona numbering.

$$\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with Cremona labels.