Show commands for:
SageMath
sage: E = EllipticCurve("hp1")
sage: E.isogeny_class()
Elliptic curves in class 193600.hp
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
193600.hp1 | 193600jd2 | [0, -1, 0, -488033, 513139937] | [] | 4730880 | |
193600.hp2 | 193600jd1 | [0, -1, 0, -48033, -4036063] | [] | 430080 | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 193600.hp have rank \(0\).
Complex multiplication
The elliptic curves in class 193600.hp do not have complex multiplication.Modular form 193600.2.a.hp
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 11 \\ 11 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.