Show commands for:
SageMath
sage: E = EllipticCurve("ba1")
sage: E.isogeny_class()
Elliptic curves in class 19350ba
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
19350.e3 | 19350ba1 | [1, -1, 0, -15417, 739741] | [2] | 36864 | \(\Gamma_0(N)\)-optimal |
19350.e2 | 19350ba2 | [1, -1, 0, -19917, 276241] | [2, 2] | 73728 | |
19350.e1 | 19350ba3 | [1, -1, 0, -188667, -31280009] | [2] | 147456 | |
19350.e4 | 19350ba4 | [1, -1, 0, 76833, 2114491] | [2] | 147456 |
Rank
sage: E.rank()
The elliptic curves in class 19350ba have rank \(1\).
Complex multiplication
The elliptic curves in class 19350ba do not have complex multiplication.Modular form 19350.2.a.ba
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.