# Properties

 Label 19320.ba6 Conductor $19320$ Discriminant $-859185941040$ j-invariant $$\frac{84611246065664}{53699121315}$$ CM no Rank $1$ Torsion structure $$\Z/{4}\Z$$

# Related objects

Show commands: Magma / Pari/GP / SageMath

## Minimal Weierstrass equation

sage: E = EllipticCurve([0, 1, 0, 2305, 14010])

gp: E = ellinit([0, 1, 0, 2305, 14010])

magma: E := EllipticCurve([0, 1, 0, 2305, 14010]);

$$y^2=x^3+x^2+2305x+14010$$

## Mordell-Weil group structure

$\Z\times \Z/{4}\Z$

### Infinite order Mordell-Weil generator and height

sage: E.gens()

magma: Generators(E);

 $P$ = $$\left(19, 255\right)$$ $\hat{h}(P)$ ≈ $2.9442033878641147596029865471$

## Torsion generators

sage: E.torsion_subgroup().gens()

gp: elltors(E)

magma: TorsionSubgroup(E);

$$\left(43, 441\right)$$

## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

$$\left(-6, 0\right)$$, $$(19,\pm 255)$$, $$(43,\pm 441)$$, $$(778,\pm 21756)$$

## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor: $$19320$$ = $2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 23$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $-859185941040$ = $-1 \cdot 2^{4} \cdot 3^{4} \cdot 5 \cdot 7^{8} \cdot 23$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$\frac{84611246065664}{53699121315}$$ = $2^{11} \cdot 3^{-4} \cdot 5^{-1} \cdot 7^{-8} \cdot 23^{-1} \cdot 3457^{3}$ Endomorphism ring: $\Z$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) Sato-Tate group: $\mathrm{SU}(2)$ Faltings height: $0.97893455131333751270148660644\dots$ Stable Faltings height: $0.74788549112668907622907589929\dots$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Analytic rank: $1$ sage: E.regulator()  magma: Regulator(E); Regulator: $2.9442033878641147596029865471\dots$ sage: E.period_lattice().omega()  gp: E.omega[1]  magma: RealPeriod(E); Real period: $0.55299653220616236801023703917\dots$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $64$  = $2\cdot2^{2}\cdot1\cdot2^{3}\cdot1$ sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E)); Torsion order: $4$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $1$ (exact) sage: r = E.rank(); sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()  gp: ar = ellanalyticrank(E); gp: ar[2]/factorial(ar[1])  magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12); Special value: $L'(E,1)$ ≈ $6.5125370543939611666251741754757091410$

## Modular invariants

Modular form 19320.2.a.ba

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

magma: ModularForm(E);

$$q + q^{3} + q^{5} + q^{7} + q^{9} - 4q^{11} - 2q^{13} + q^{15} + 2q^{17} - 4q^{19} + O(q^{20})$$

For more coefficients, see the Downloads section to the right.

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 28672 $\Gamma_0(N)$-optimal: yes Manin constant: 1

## Local data

This elliptic curve is not semistable. There are 5 primes of bad reduction:

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($N$) ord($\Delta$) ord$(j)_{-}$
$2$ $2$ $III$ Additive -1 3 4 0
$3$ $4$ $I_{4}$ Split multiplicative -1 1 4 4
$5$ $1$ $I_{1}$ Split multiplicative -1 1 1 1
$7$ $8$ $I_{8}$ Split multiplicative -1 1 8 8
$23$ $1$ $I_{1}$ Non-split multiplicative 1 1 1 1

## Galois representations

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.

prime $\ell$ mod-$\ell$ image $\ell$-adic image
$2$ 2B 8.24.0.45

## $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]

Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.

## Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 add split split split ordinary ordinary ordinary ordinary nonsplit ordinary ordinary ordinary ordinary ordinary ordinary - 4 6 2 1 1 1 1 1 1 1 1 1 1 1 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

## Isogenies

This curve has non-trivial cyclic isogenies of degree $d$ for $d=$ 2, 4 and 8.
Its isogeny class 19320.ba consists of 6 curves linked by isogenies of degrees dividing 8.

## Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{4}\Z$ are as follows:

 $[K:\Q]$ $E(K)_{\rm tors}$ Base change curve $K$ $2$ $$\Q(\sqrt{-115})$$ $$\Z/2\Z \times \Z/4\Z$$ Not in database $2$ $$\Q(\sqrt{23})$$ $$\Z/8\Z$$ Not in database $2$ $$\Q(\sqrt{-5})$$ $$\Z/8\Z$$ Not in database $4$ $$\Q(\sqrt{-5}, \sqrt{23})$$ $$\Z/2\Z \times \Z/8\Z$$ Not in database $8$ 8.0.9474296896000000.1 $$\Z/4\Z \times \Z/4\Z$$ Not in database $8$ 8.0.9474296896000000.5 $$\Z/2\Z \times \Z/8\Z$$ Not in database $8$ Deg 8 $$\Z/16\Z$$ Not in database $8$ Deg 8 $$\Z/16\Z$$ Not in database $8$ Deg 8 $$\Z/12\Z$$ Not in database $16$ Deg 16 $$\Z/4\Z \times \Z/8\Z$$ Not in database $16$ Deg 16 $$\Z/2\Z \times \Z/16\Z$$ Not in database $16$ Deg 16 $$\Z/2\Z \times \Z/16\Z$$ Not in database $16$ Deg 16 $$\Z/2\Z \times \Z/12\Z$$ Not in database $16$ Deg 16 $$\Z/24\Z$$ Not in database $16$ Deg 16 $$\Z/24\Z$$ Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.