Show commands: SageMath
Rank
The elliptic curves in class 1925a have rank \(1\).
L-function data
| Bad L-factors: |
| |||||||||||||||||||||||||||
| Good L-factors: |
| |||||||||||||||||||||||||||
| See L-function page for more information | ||||||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 1925a do not have complex multiplication.Modular form 1925.2.a.a
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrr} 1 & 3 & 9 \\ 3 & 1 & 3 \\ 9 & 3 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 1925a
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 1925.f1 | 1925a1 | \([0, -1, 1, -2233, 41368]\) | \(-78843215872/539\) | \(-8421875\) | \([]\) | \(720\) | \(0.50972\) | \(\Gamma_0(N)\)-optimal |
| 1925.f2 | 1925a2 | \([0, -1, 1, -1233, 77493]\) | \(-13278380032/156590819\) | \(-2446731546875\) | \([]\) | \(2160\) | \(1.0590\) | |
| 1925.f3 | 1925a3 | \([0, -1, 1, 11017, -1998882]\) | \(9463555063808/115539436859\) | \(-1805303700921875\) | \([]\) | \(6480\) | \(1.6083\) |