Learn more

Refine search


Results (26 matches)

  displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
1925.a1 1925.a \( 5^{2} \cdot 7 \cdot 11 \) $1$ $\mathsf{trivial}$ $0.495516217$ $[0, 0, 1, -5, -4]$ \(y^2+y=x^3-5x-4\) 154.2.0.? $[(-1, 0)]$
1925.b1 1925.b \( 5^{2} \cdot 7 \cdot 11 \) $1$ $\Z/2\Z$ $0.165963007$ $[1, 0, 0, -1168, 14427]$ \(y^2+xy=x^3-1168x+14427\) 2.3.0.a.1, 10.6.0.a.1, 44.6.0.d.1, 220.12.0.? $[(13, 32)]$
1925.b2 1925.b \( 5^{2} \cdot 7 \cdot 11 \) $1$ $\Z/2\Z$ $0.331926014$ $[1, 0, 0, 57, 952]$ \(y^2+xy=x^3+57x+952\) 2.3.0.a.1, 20.6.0.c.1, 44.6.0.d.1, 110.6.0.?, 220.12.0.? $[(-3, 29)]$
1925.c1 1925.c \( 5^{2} \cdot 7 \cdot 11 \) $1$ $\Z/2\Z$ $0.188388303$ $[1, 0, 0, -1288, 16317]$ \(y^2+xy=x^3-1288x+16317\) 2.3.0.a.1, 28.6.0.c.1, 44.6.0.a.1, 308.12.0.? $[(7, 84)]$
1925.c2 1925.c \( 5^{2} \cdot 7 \cdot 11 \) $1$ $\Z/2\Z$ $0.376776606$ $[1, 0, 0, 87, 1192]$ \(y^2+xy=x^3+87x+1192\) 2.3.0.a.1, 14.6.0.b.1, 44.6.0.b.1, 308.12.0.? $[(3, 37)]$
1925.d1 1925.d \( 5^{2} \cdot 7 \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -32638, -2272233]$ \(y^2+xy=x^3-32638x-2272233\) 2.3.0.a.1, 10.6.0.a.1, 44.6.0.d.1, 220.12.0.? $[ ]$
1925.d2 1925.d \( 5^{2} \cdot 7 \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -2013, -36608]$ \(y^2+xy=x^3-2013x-36608\) 2.3.0.a.1, 20.6.0.c.1, 44.6.0.d.1, 110.6.0.?, 220.12.0.? $[ ]$
1925.e1 1925.e \( 5^{2} \cdot 7 \cdot 11 \) $1$ $\mathsf{trivial}$ $2.441514165$ $[0, 1, 1, -1783, -29581]$ \(y^2+y=x^3+x^2-1783x-29581\) 3.8.0-3.a.1.1, 154.2.0.?, 462.16.0.? $[(-99/2, -1/2)]$
1925.e2 1925.e \( 5^{2} \cdot 7 \cdot 11 \) $1$ $\Z/3\Z$ $0.813838055$ $[0, 1, 1, -33, -6]$ \(y^2+y=x^3+x^2-33x-6\) 3.8.0-3.a.1.2, 154.2.0.?, 462.16.0.? $[(-6, 3)]$
1925.f1 1925.f \( 5^{2} \cdot 7 \cdot 11 \) $1$ $\mathsf{trivial}$ $0.493847592$ $[0, -1, 1, -2233, 41368]$ \(y^2+y=x^3-x^2-2233x+41368\) 3.4.0.a.1, 9.12.0.a.1, 15.8.0-3.a.1.2, 22.2.0.a.1, 45.24.0-9.a.1.1, $\ldots$ $[(28, 3)]$
1925.f2 1925.f \( 5^{2} \cdot 7 \cdot 11 \) $1$ $\mathsf{trivial}$ $1.481542777$ $[0, -1, 1, -1233, 77493]$ \(y^2+y=x^3-x^2-1233x+77493\) 3.12.0.a.1, 15.24.0-3.a.1.1, 22.2.0.a.1, 63.36.0.b.1, 66.24.1.b.1, $\ldots$ $[(-47, 171)]$
1925.f3 1925.f \( 5^{2} \cdot 7 \cdot 11 \) $1$ $\mathsf{trivial}$ $4.444628332$ $[0, -1, 1, 11017, -1998882]$ \(y^2+y=x^3-x^2+11017x-1998882\) 3.4.0.a.1, 9.12.0.a.1, 15.8.0-3.a.1.1, 22.2.0.a.1, 45.24.0-9.a.1.2, $\ldots$ $[(128, 1221)]$
1925.g1 1925.g \( 5^{2} \cdot 7 \cdot 11 \) $1$ $\mathsf{trivial}$ $10.09121805$ $[0, -1, 1, -44583, -3608432]$ \(y^2+y=x^3-x^2-44583x-3608432\) 3.4.0.a.1, 15.8.0-3.a.1.1, 154.2.0.?, 462.8.0.?, 2310.16.0.? $[(-203944/41, 137960/41)]$
1925.g2 1925.g \( 5^{2} \cdot 7 \cdot 11 \) $1$ $\mathsf{trivial}$ $3.363739351$ $[0, -1, 1, -833, 943]$ \(y^2+y=x^3-x^2-833x+943\) 3.4.0.a.1, 15.8.0-3.a.1.2, 154.2.0.?, 462.8.0.?, 2310.16.0.? $[(1, 10)]$
1925.h1 1925.h \( 5^{2} \cdot 7 \cdot 11 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, 50, 31]$ \(y^2+y=x^3+50x+31\) 22.2.0.a.1 $[ ]$
1925.i1 1925.i \( 5^{2} \cdot 7 \cdot 11 \) $1$ $\Z/2\Z$ $6.707345671$ $[1, -1, 0, -256667, 50114116]$ \(y^2+xy=x^3-x^2-256667x+50114116\) 2.3.0.a.1, 4.6.0.c.1, 40.12.0-4.c.1.5, 56.12.0.z.1, 88.12.0.?, $\ldots$ $[(20761/8, 405431/8)]$
1925.i2 1925.i \( 5^{2} \cdot 7 \cdot 11 \) $1$ $\Z/2\Z$ $1.676836417$ $[1, -1, 0, -17417, 644366]$ \(y^2+xy=x^3-x^2-17417x+644366\) 2.3.0.a.1, 4.6.0.c.1, 20.12.0-4.c.1.1, 44.12.0.h.1, 56.12.0.z.1, $\ldots$ $[(-86, 1268)]$
1925.i3 1925.i \( 5^{2} \cdot 7 \cdot 11 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $3.353672835$ $[1, -1, 0, -16042, 785991]$ \(y^2+xy=x^3-x^2-16042x+785991\) 2.6.0.a.1, 20.12.0-2.a.1.1, 28.12.0.b.1, 44.12.0.a.1, 140.24.0.?, $\ldots$ $[(174, 1713)]$
1925.i4 1925.i \( 5^{2} \cdot 7 \cdot 11 \) $1$ $\Z/2\Z$ $1.676836417$ $[1, -1, 0, -917, 14616]$ \(y^2+xy=x^3-x^2-917x+14616\) 2.3.0.a.1, 4.6.0.c.1, 14.6.0.b.1, 20.12.0-4.c.1.2, 28.12.0.g.1, $\ldots$ $[(8, 84)]$
1925.j1 1925.j \( 5^{2} \cdot 7 \cdot 11 \) $1$ $\Z/2\Z$ $1.656060081$ $[1, 1, 0, -1375, 18750]$ \(y^2+xy=x^3+x^2-1375x+18750\) 2.3.0.a.1, 28.6.0.c.1, 44.6.0.a.1, 308.12.0.? $[(30, 60)]$
1925.j2 1925.j \( 5^{2} \cdot 7 \cdot 11 \) $1$ $\Z/2\Z$ $3.312120162$ $[1, 1, 0, 0, 875]$ \(y^2+xy=x^3+x^2+875\) 2.3.0.a.1, 14.6.0.b.1, 44.6.0.b.1, 308.12.0.? $[(59/2, 469/2)]$
1925.k1 1925.k \( 5^{2} \cdot 7 \cdot 11 \) $1$ $\Z/2\Z$ $2.840189956$ $[1, 1, 0, -1305, -18700]$ \(y^2+xy=x^3+x^2-1305x-18700\) 2.3.0.a.1, 10.6.0.a.1, 44.6.0.d.1, 220.12.0.? $[(80, 590)]$
1925.k2 1925.k \( 5^{2} \cdot 7 \cdot 11 \) $1$ $\Z/2\Z$ $5.680379913$ $[1, 1, 0, -80, -325]$ \(y^2+xy=x^3+x^2-80x-325\) 2.3.0.a.1, 20.6.0.c.1, 44.6.0.d.1, 110.6.0.?, 220.12.0.? $[(565/4, 12055/4)]$
1925.l1 1925.l \( 5^{2} \cdot 7 \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -29200, 1803375]$ \(y^2+xy=x^3+x^2-29200x+1803375\) 2.3.0.a.1, 10.6.0.a.1, 44.6.0.d.1, 220.12.0.? $[ ]$
1925.l2 1925.l \( 5^{2} \cdot 7 \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, 1425, 119000]$ \(y^2+xy=x^3+x^2+1425x+119000\) 2.3.0.a.1, 20.6.0.c.1, 44.6.0.d.1, 110.6.0.?, 220.12.0.? $[ ]$
1925.m1 1925.m \( 5^{2} \cdot 7 \cdot 11 \) $1$ $\mathsf{trivial}$ $3.563430987$ $[0, 0, 1, -125, -469]$ \(y^2+y=x^3-125x-469\) 154.2.0.? $[(-31/2, 43/2)]$
  displayed columns for results