| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
| 1925.a1 |
1925g1 |
1925.a |
1925g |
$1$ |
$1$ |
\( 5^{2} \cdot 7 \cdot 11 \) |
\( 5^{2} \cdot 7 \cdot 11 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$154$ |
$2$ |
$0$ |
$0.495516217$ |
$1$ |
|
$4$ |
$120$ |
$-0.643370$ |
$552960/77$ |
$0.74478$ |
$2.17409$ |
$[0, 0, 1, -5, -4]$ |
\(y^2+y=x^3-5x-4\) |
154.2.0.? |
$[(-1, 0)]$ |
| 1925.b1 |
1925i2 |
1925.b |
1925i |
$2$ |
$2$ |
\( 5^{2} \cdot 7 \cdot 11 \) |
\( 5^{3} \cdot 7^{2} \cdot 11^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$220$ |
$12$ |
$0$ |
$0.165963007$ |
$1$ |
|
$10$ |
$1344$ |
$0.677427$ |
$1409825840597/86806489$ |
$0.92643$ |
$4.33746$ |
$[1, 0, 0, -1168, 14427]$ |
\(y^2+xy=x^3-1168x+14427\) |
2.3.0.a.1, 10.6.0.a.1, 44.6.0.d.1, 220.12.0.? |
$[(13, 32)]$ |
| 1925.b2 |
1925i1 |
1925.b |
1925i |
$2$ |
$2$ |
\( 5^{2} \cdot 7 \cdot 11 \) |
\( - 5^{3} \cdot 7^{4} \cdot 11^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$220$ |
$12$ |
$0$ |
$0.331926014$ |
$1$ |
|
$11$ |
$672$ |
$0.330854$ |
$163667323/3195731$ |
$0.91763$ |
$3.60061$ |
$[1, 0, 0, 57, 952]$ |
\(y^2+xy=x^3+57x+952\) |
2.3.0.a.1, 20.6.0.c.1, 44.6.0.d.1, 110.6.0.?, 220.12.0.? |
$[(-3, 29)]$ |
| 1925.c1 |
1925f2 |
1925.c |
1925f |
$2$ |
$2$ |
\( 5^{2} \cdot 7 \cdot 11 \) |
\( 5^{6} \cdot 7^{6} \cdot 11 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$308$ |
$12$ |
$0$ |
$0.188388303$ |
$1$ |
|
$12$ |
$1536$ |
$0.718699$ |
$15124197817/1294139$ |
$0.97750$ |
$4.37625$ |
$[1, 0, 0, -1288, 16317]$ |
\(y^2+xy=x^3-1288x+16317\) |
2.3.0.a.1, 28.6.0.c.1, 44.6.0.a.1, 308.12.0.? |
$[(7, 84)]$ |
| 1925.c2 |
1925f1 |
1925.c |
1925f |
$2$ |
$2$ |
\( 5^{2} \cdot 7 \cdot 11 \) |
\( - 5^{6} \cdot 7^{3} \cdot 11^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$308$ |
$12$ |
$0$ |
$0.376776606$ |
$1$ |
|
$9$ |
$768$ |
$0.372126$ |
$4657463/41503$ |
$0.89262$ |
$3.65978$ |
$[1, 0, 0, 87, 1192]$ |
\(y^2+xy=x^3+87x+1192\) |
2.3.0.a.1, 14.6.0.b.1, 44.6.0.b.1, 308.12.0.? |
$[(3, 37)]$ |
| 1925.d1 |
1925m2 |
1925.d |
1925m |
$2$ |
$2$ |
\( 5^{2} \cdot 7 \cdot 11 \) |
\( 5^{9} \cdot 7^{2} \cdot 11^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$220$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$4160$ |
$1.158876$ |
$1968634623437/5929$ |
$1.03649$ |
$5.65848$ |
$[1, 0, 0, -32638, -2272233]$ |
\(y^2+xy=x^3-32638x-2272233\) |
2.3.0.a.1, 10.6.0.a.1, 44.6.0.d.1, 220.12.0.? |
$[ ]$ |
| 1925.d2 |
1925m1 |
1925.d |
1925m |
$2$ |
$2$ |
\( 5^{2} \cdot 7 \cdot 11 \) |
\( - 5^{9} \cdot 7^{4} \cdot 11 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$220$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$2080$ |
$0.812303$ |
$-461889917/26411$ |
$0.98288$ |
$4.56584$ |
$[1, 0, 0, -2013, -36608]$ |
\(y^2+xy=x^3-2013x-36608\) |
2.3.0.a.1, 20.6.0.c.1, 44.6.0.d.1, 110.6.0.?, 220.12.0.? |
$[ ]$ |
| 1925.e1 |
1925k2 |
1925.e |
1925k |
$2$ |
$3$ |
\( 5^{2} \cdot 7 \cdot 11 \) |
\( 5^{4} \cdot 7 \cdot 11^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$462$ |
$16$ |
$0$ |
$2.441514165$ |
$1$ |
|
$0$ |
$648$ |
$0.461672$ |
$1003555225600/9317$ |
$0.97185$ |
$4.50532$ |
$[0, 1, 1, -1783, -29581]$ |
\(y^2+y=x^3+x^2-1783x-29581\) |
3.8.0-3.a.1.1, 154.2.0.?, 462.16.0.? |
$[(-99/2, -1/2)]$ |
| 1925.e2 |
1925k1 |
1925.e |
1925k |
$2$ |
$3$ |
\( 5^{2} \cdot 7 \cdot 11 \) |
\( 5^{4} \cdot 7^{3} \cdot 11 \) |
$1$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.1 |
3B.1.1 |
$462$ |
$16$ |
$0$ |
$0.813838055$ |
$1$ |
|
$8$ |
$216$ |
$-0.087634$ |
$6553600/3773$ |
$1.06030$ |
$2.92664$ |
$[0, 1, 1, -33, -6]$ |
\(y^2+y=x^3+x^2-33x-6\) |
3.8.0-3.a.1.2, 154.2.0.?, 462.16.0.? |
$[(-6, 3)]$ |
| 1925.f1 |
1925a1 |
1925.f |
1925a |
$3$ |
$9$ |
\( 5^{2} \cdot 7 \cdot 11 \) |
\( - 5^{6} \cdot 7^{2} \cdot 11 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$6930$ |
$144$ |
$3$ |
$0.493847592$ |
$1$ |
|
$4$ |
$720$ |
$0.509719$ |
$-78843215872/539$ |
$1.00604$ |
$4.59458$ |
$[0, -1, 1, -2233, 41368]$ |
\(y^2+y=x^3-x^2-2233x+41368\) |
3.4.0.a.1, 9.12.0.a.1, 15.8.0-3.a.1.2, 22.2.0.a.1, 45.24.0-9.a.1.1, $\ldots$ |
$[(28, 3)]$ |
| 1925.f2 |
1925a2 |
1925.f |
1925a |
$3$ |
$9$ |
\( 5^{2} \cdot 7 \cdot 11 \) |
\( - 5^{6} \cdot 7^{6} \cdot 11^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.12.0.1 |
3Cs |
$6930$ |
$144$ |
$3$ |
$1.481542777$ |
$1$ |
|
$4$ |
$2160$ |
$1.059025$ |
$-13278380032/156590819$ |
$1.06522$ |
$4.76397$ |
$[0, -1, 1, -1233, 77493]$ |
\(y^2+y=x^3-x^2-1233x+77493\) |
3.12.0.a.1, 15.24.0-3.a.1.1, 22.2.0.a.1, 63.36.0.b.1, 66.24.1.b.1, $\ldots$ |
$[(-47, 171)]$ |
| 1925.f3 |
1925a3 |
1925.f |
1925a |
$3$ |
$9$ |
\( 5^{2} \cdot 7 \cdot 11 \) |
\( - 5^{6} \cdot 7^{2} \cdot 11^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$6930$ |
$144$ |
$3$ |
$4.444628332$ |
$1$ |
|
$2$ |
$6480$ |
$1.608332$ |
$9463555063808/115539436859$ |
$1.06593$ |
$5.62442$ |
$[0, -1, 1, 11017, -1998882]$ |
\(y^2+y=x^3-x^2+11017x-1998882\) |
3.4.0.a.1, 9.12.0.a.1, 15.8.0-3.a.1.1, 22.2.0.a.1, 45.24.0-9.a.1.2, $\ldots$ |
$[(128, 1221)]$ |
| 1925.g1 |
1925b2 |
1925.g |
1925b |
$2$ |
$3$ |
\( 5^{2} \cdot 7 \cdot 11 \) |
\( 5^{10} \cdot 7 \cdot 11^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2310$ |
$16$ |
$0$ |
$10.09121805$ |
$1$ |
|
$0$ |
$3240$ |
$1.266390$ |
$1003555225600/9317$ |
$0.97185$ |
$5.78220$ |
$[0, -1, 1, -44583, -3608432]$ |
\(y^2+y=x^3-x^2-44583x-3608432\) |
3.4.0.a.1, 15.8.0-3.a.1.1, 154.2.0.?, 462.8.0.?, 2310.16.0.? |
$[(-203944/41, 137960/41)]$ |
| 1925.g2 |
1925b1 |
1925.g |
1925b |
$2$ |
$3$ |
\( 5^{2} \cdot 7 \cdot 11 \) |
\( 5^{10} \cdot 7^{3} \cdot 11 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2310$ |
$16$ |
$0$ |
$3.363739351$ |
$1$ |
|
$2$ |
$1080$ |
$0.717085$ |
$6553600/3773$ |
$1.06030$ |
$4.20352$ |
$[0, -1, 1, -833, 943]$ |
\(y^2+y=x^3-x^2-833x+943\) |
3.4.0.a.1, 15.8.0-3.a.1.2, 154.2.0.?, 462.8.0.?, 2310.16.0.? |
$[(1, 10)]$ |
| 1925.h1 |
1925d1 |
1925.h |
1925d |
$1$ |
$1$ |
\( 5^{2} \cdot 7 \cdot 11 \) |
\( - 5^{6} \cdot 7^{2} \cdot 11 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$22$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$560$ |
$0.018065$ |
$884736/539$ |
$1.02512$ |
$3.08749$ |
$[0, 0, 1, 50, 31]$ |
\(y^2+y=x^3+50x+31\) |
22.2.0.a.1 |
$[ ]$ |
| 1925.i1 |
1925e4 |
1925.i |
1925e |
$4$ |
$4$ |
\( 5^{2} \cdot 7 \cdot 11 \) |
\( 5^{8} \cdot 7 \cdot 11 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$3080$ |
$48$ |
$0$ |
$6.707345671$ |
$1$ |
|
$0$ |
$6144$ |
$1.433628$ |
$119678115308998401/1925$ |
$1.06205$ |
$6.47657$ |
$[1, -1, 0, -256667, 50114116]$ |
\(y^2+xy=x^3-x^2-256667x+50114116\) |
2.3.0.a.1, 4.6.0.c.1, 40.12.0-4.c.1.5, 56.12.0.z.1, 88.12.0.?, $\ldots$ |
$[(20761/8, 405431/8)]$ |
| 1925.i2 |
1925e3 |
1925.i |
1925e |
$4$ |
$4$ |
\( 5^{2} \cdot 7 \cdot 11 \) |
\( 5^{14} \cdot 7^{4} \cdot 11 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$3080$ |
$48$ |
$0$ |
$1.676836417$ |
$1$ |
|
$4$ |
$6144$ |
$1.433628$ |
$37397086385121/10316796875$ |
$0.96169$ |
$5.40936$ |
$[1, -1, 0, -17417, 644366]$ |
\(y^2+xy=x^3-x^2-17417x+644366\) |
2.3.0.a.1, 4.6.0.c.1, 20.12.0-4.c.1.1, 44.12.0.h.1, 56.12.0.z.1, $\ldots$ |
$[(-86, 1268)]$ |
| 1925.i3 |
1925e2 |
1925.i |
1925e |
$4$ |
$4$ |
\( 5^{2} \cdot 7 \cdot 11 \) |
\( 5^{10} \cdot 7^{2} \cdot 11^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$1540$ |
$48$ |
$0$ |
$3.353672835$ |
$1$ |
|
$4$ |
$3072$ |
$1.087053$ |
$29220958012401/3705625$ |
$1.02662$ |
$5.37674$ |
$[1, -1, 0, -16042, 785991]$ |
\(y^2+xy=x^3-x^2-16042x+785991\) |
2.6.0.a.1, 20.12.0-2.a.1.1, 28.12.0.b.1, 44.12.0.a.1, 140.24.0.?, $\ldots$ |
$[(174, 1713)]$ |
| 1925.i4 |
1925e1 |
1925.i |
1925e |
$4$ |
$4$ |
\( 5^{2} \cdot 7 \cdot 11 \) |
\( - 5^{8} \cdot 7 \cdot 11^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$3080$ |
$48$ |
$0$ |
$1.676836417$ |
$1$ |
|
$3$ |
$1536$ |
$0.740480$ |
$-5461074081/2562175$ |
$0.88300$ |
$4.32006$ |
$[1, -1, 0, -917, 14616]$ |
\(y^2+xy=x^3-x^2-917x+14616\) |
2.3.0.a.1, 4.6.0.c.1, 14.6.0.b.1, 20.12.0-4.c.1.2, 28.12.0.g.1, $\ldots$ |
$[(8, 84)]$ |
| 1925.j1 |
1925c2 |
1925.j |
1925c |
$2$ |
$2$ |
\( 5^{2} \cdot 7 \cdot 11 \) |
\( 5^{10} \cdot 7^{2} \cdot 11 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$308$ |
$12$ |
$0$ |
$1.656060081$ |
$1$ |
|
$2$ |
$1536$ |
$0.660223$ |
$18420660721/336875$ |
$0.86183$ |
$4.40232$ |
$[1, 1, 0, -1375, 18750]$ |
\(y^2+xy=x^3+x^2-1375x+18750\) |
2.3.0.a.1, 28.6.0.c.1, 44.6.0.a.1, 308.12.0.? |
$[(30, 60)]$ |
| 1925.j2 |
1925c1 |
1925.j |
1925c |
$2$ |
$2$ |
\( 5^{2} \cdot 7 \cdot 11 \) |
\( - 5^{8} \cdot 7 \cdot 11^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$308$ |
$12$ |
$0$ |
$3.312120162$ |
$1$ |
|
$1$ |
$768$ |
$0.313650$ |
$-1/21175$ |
$1.05851$ |
$3.57967$ |
$[1, 1, 0, 0, 875]$ |
\(y^2+xy=x^3+x^2+875\) |
2.3.0.a.1, 14.6.0.b.1, 44.6.0.b.1, 308.12.0.? |
$[(59/2, 469/2)]$ |
| 1925.k1 |
1925h2 |
1925.k |
1925h |
$2$ |
$2$ |
\( 5^{2} \cdot 7 \cdot 11 \) |
\( 5^{3} \cdot 7^{2} \cdot 11^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$220$ |
$12$ |
$0$ |
$2.840189956$ |
$1$ |
|
$2$ |
$832$ |
$0.354157$ |
$1968634623437/5929$ |
$1.03649$ |
$4.38160$ |
$[1, 1, 0, -1305, -18700]$ |
\(y^2+xy=x^3+x^2-1305x-18700\) |
2.3.0.a.1, 10.6.0.a.1, 44.6.0.d.1, 220.12.0.? |
$[(80, 590)]$ |
| 1925.k2 |
1925h1 |
1925.k |
1925h |
$2$ |
$2$ |
\( 5^{2} \cdot 7 \cdot 11 \) |
\( - 5^{3} \cdot 7^{4} \cdot 11 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$220$ |
$12$ |
$0$ |
$5.680379913$ |
$1$ |
|
$1$ |
$416$ |
$0.007583$ |
$-461889917/26411$ |
$0.98288$ |
$3.28896$ |
$[1, 1, 0, -80, -325]$ |
\(y^2+xy=x^3+x^2-80x-325\) |
2.3.0.a.1, 20.6.0.c.1, 44.6.0.d.1, 110.6.0.?, 220.12.0.? |
$[(565/4, 12055/4)]$ |
| 1925.l1 |
1925l2 |
1925.l |
1925l |
$2$ |
$2$ |
\( 5^{2} \cdot 7 \cdot 11 \) |
\( 5^{9} \cdot 7^{2} \cdot 11^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$220$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$6720$ |
$1.482147$ |
$1409825840597/86806489$ |
$0.92643$ |
$5.61434$ |
$[1, 1, 0, -29200, 1803375]$ |
\(y^2+xy=x^3+x^2-29200x+1803375\) |
2.3.0.a.1, 10.6.0.a.1, 44.6.0.d.1, 220.12.0.? |
$[ ]$ |
| 1925.l2 |
1925l1 |
1925.l |
1925l |
$2$ |
$2$ |
\( 5^{2} \cdot 7 \cdot 11 \) |
\( - 5^{9} \cdot 7^{4} \cdot 11^{3} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$220$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$3360$ |
$1.135572$ |
$163667323/3195731$ |
$0.91763$ |
$4.87749$ |
$[1, 1, 0, 1425, 119000]$ |
\(y^2+xy=x^3+x^2+1425x+119000\) |
2.3.0.a.1, 20.6.0.c.1, 44.6.0.d.1, 110.6.0.?, 220.12.0.? |
$[ ]$ |
| 1925.m1 |
1925j1 |
1925.m |
1925j |
$1$ |
$1$ |
\( 5^{2} \cdot 7 \cdot 11 \) |
\( 5^{8} \cdot 7 \cdot 11 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$154$ |
$2$ |
$0$ |
$3.563430987$ |
$1$ |
|
$0$ |
$600$ |
$0.161350$ |
$552960/77$ |
$0.74478$ |
$3.45096$ |
$[0, 0, 1, -125, -469]$ |
\(y^2+y=x^3-125x-469\) |
154.2.0.? |
$[(-31/2, 43/2)]$ |