Properties

Label 1920.x
Number of curves $2$
Conductor $1920$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("x1")
 
E.isogeny_class()
 

Elliptic curves in class 1920.x

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1920.x1 1920x2 \([0, 1, 0, -25, 23]\) \(219488/75\) \(614400\) \([2]\) \(384\) \(-0.18728\)  
1920.x2 1920x1 \([0, 1, 0, 5, 5]\) \(43904/45\) \(-11520\) \([2]\) \(192\) \(-0.53386\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 1920.x have rank \(0\).

Complex multiplication

The elliptic curves in class 1920.x do not have complex multiplication.

Modular form 1920.2.a.x

sage: E.q_eigenform(10)
 
\(q + q^{3} + q^{5} + 4 q^{7} + q^{9} - 6 q^{11} - 4 q^{13} + q^{15} + 4 q^{17} + 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.