Properties

Label 192.c
Number of curves $4$
Conductor $192$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("c1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 192.c have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 192.c do not have complex multiplication.

Modular form 192.2.a.c

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} - 2 q^{5} + 4 q^{7} + q^{9} + 4 q^{11} + 2 q^{13} - 2 q^{15} - 6 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 192.c

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
192.c1 192b3 \([0, 1, 0, -129, -609]\) \(7301384/3\) \(98304\) \([2]\) \(32\) \(-0.079647\)  
192.c2 192b2 \([0, 1, 0, -9, -9]\) \(21952/9\) \(36864\) \([2, 2]\) \(16\) \(-0.42622\)  
192.c3 192b1 \([0, 1, 0, -4, 2]\) \(140608/3\) \(192\) \([2]\) \(8\) \(-0.77279\) \(\Gamma_0(N)\)-optimal
192.c4 192b4 \([0, 1, 0, 31, -33]\) \(97336/81\) \(-2654208\) \([4]\) \(32\) \(-0.079647\)