Show commands: SageMath
Rank
The elliptic curves in class 192.c have rank \(0\).
L-function data
| Bad L-factors: |
| ||||||||||||||||||||||||||||||
| Good L-factors: |
| ||||||||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 192.c do not have complex multiplication.Modular form 192.2.a.c
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 192.c
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 192.c1 | 192b3 | \([0, 1, 0, -129, -609]\) | \(7301384/3\) | \(98304\) | \([2]\) | \(32\) | \(-0.079647\) | |
| 192.c2 | 192b2 | \([0, 1, 0, -9, -9]\) | \(21952/9\) | \(36864\) | \([2, 2]\) | \(16\) | \(-0.42622\) | |
| 192.c3 | 192b1 | \([0, 1, 0, -4, 2]\) | \(140608/3\) | \(192\) | \([2]\) | \(8\) | \(-0.77279\) | \(\Gamma_0(N)\)-optimal |
| 192.c4 | 192b4 | \([0, 1, 0, 31, -33]\) | \(97336/81\) | \(-2654208\) | \([4]\) | \(32\) | \(-0.079647\) |