Show commands for: Magma / SageMath / Pari/GP

## Minimal Weierstrass equation

magma: E := EllipticCurve([1, 0, 0, 6132, -309680]); // or

magma: E := EllipticCurve("19166a3");

sage: E = EllipticCurve([1, 0, 0, 6132, -309680]) # or

sage: E = EllipticCurve("19166a3")

gp: E = ellinit([1, 0, 0, 6132, -309680]) \\ or

gp: E = ellinit("19166a3")

$$y^2 + x y = x^{3} + 6132 x - 309680$$

## Mordell-Weil group structure

$$\Z\times \Z/{2}\Z$$

### Infinite order Mordell-Weil generator and height

magma: Generators(E);

sage: E.gens()

 $$P$$ = $$\left(114, 1312\right)$$ $$\hat{h}(P)$$ ≈ 0.939023195151

## Torsion generators

magma: TorsionSubgroup(E);

sage: E.torsion_subgroup().gens()

gp: elltors(E)

$$\left(40, -20\right)$$

## Integral points

magma: IntegralPoints(E);

sage: E.integral_points()

$$\left(40, -20\right)$$, $$\left(44, 192\right)$$, $$\left(44, -236\right)$$, $$\left(114, 1312\right)$$, $$\left(114, -1426\right)$$, $$\left(188, 2644\right)$$, $$\left(188, -2832\right)$$, $$\left(2778, 145094\right)$$, $$\left(2778, -147872\right)$$

## Invariants

 magma: Conductor(E);  sage: E.conductor().factor()  gp: ellglobalred(E) Conductor: $$19166$$ = $$2 \cdot 7 \cdot 37^{2}$$ magma: Discriminant(E);  sage: E.discriminant().factor()  gp: E.disc Discriminant: $$-56322826130368$$ = $$-1 \cdot 2^{6} \cdot 7^{3} \cdot 37^{6}$$ magma: jInvariant(E);  sage: E.j_invariant().factor()  gp: E.j j-invariant: $$\frac{9938375}{21952}$$ = $$2^{-6} \cdot 5^{3} \cdot 7^{-3} \cdot 43^{3}$$ Endomorphism ring: $$\Z$$ (no Complex Multiplication) Sato-Tate Group: $\mathrm{SU}(2)$

## BSD invariants

 magma: Rank(E);  sage: E.rank() Rank: $$1$$ magma: Regulator(E);  sage: E.regulator() Regulator: $$0.939023195151$$ magma: RealPeriod(E);  sage: E.period_lattice().omega()  gp: E.omega Real period: $$0.325730611083$$ magma: TamagawaNumbers(E);  sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[i,1],gr[i]] | i<-[1..#gr[,1]]] Tamagawa product: $$72$$  = $$( 2 \cdot 3 )\cdot3\cdot2^{2}$$ magma: Order(TorsionSubgroup(E));  sage: E.torsion_order()  gp: elltors(E) Torsion order: $$2$$ magma: MordellWeilShaInformation(E);  sage: E.sha().an_numerical() Analytic order of Ш: $$1$$ (exact)

## Modular invariants

#### Modular form 19166.2.a.a

magma: ModularForm(E);

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy)/(2*xy+E.a1*xy+E.a3)

$$q + q^{2} - 2q^{3} + q^{4} - 2q^{6} + q^{7} + q^{8} + q^{9} - 2q^{12} + 4q^{13} + q^{14} + q^{16} - 6q^{17} + q^{18} - 2q^{19} + O(q^{20})$$

 magma: ModularDegree(E);  sage: E.modular_degree() Modular degree: 51840 $$\Gamma_0(N)$$-optimal: no Manin constant: 1

#### Special L-value

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

sage: r = E.rank();

sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()

gp: ar = ellanalyticrank(E);

gp: ar/factorial(ar)

$$L'(E,1)$$ ≈ $$5.5056347852$$

## Local data

This elliptic curve is not semistable.

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

sage: E.local_data()

gp: ellglobalred(E)

prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$2$$ $$6$$ $$I_{6}$$ Split multiplicative -1 1 6 6
$$7$$ $$3$$ $$I_{3}$$ Split multiplicative -1 1 3 3
$$37$$ $$4$$ $$I_0^{*}$$ Additive 1 2 6 0

## Galois representations

The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X16.

This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^3\Z_2)$ generated by $\left(\begin{array}{rr} 1 & 1 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 7 & 0 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 5 & 0 \\ 2 & 1 \end{array}\right)$ and has index 6.

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

The mod $$p$$ Galois representation has maximal image $$\GL(2,\F_p)$$ for all primes $$p$$ except those listed.

prime Image of Galois representation
$$2$$ B
$$3$$ Cs

## $p$-adic data

### $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]

$$p$$-adic regulators are not yet computed for curves that are not $$\Gamma_0$$-optimal.

## Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 split ordinary ss split ss ordinary ordinary ordinary ss ordinary ordinary add ordinary ordinary ordinary 2 7 1,3 2 1,1 1 1 3 1,1 1 1 - 1 3 1 0 1 0,0 0 0,0 0 0 0 0,0 0 0 - 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

## Isogenies

This curve has non-trivial cyclic isogenies of degree $$d$$ for $$d=$$ 2, 3 and 6.
Its isogeny class 19166.a consists of 6 curves linked by isogenies of degrees dividing 18.

## Growth of torsion in number fields

The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base-change curve
2 $$\Q(\sqrt{37})$$ $$\Z/6\Z$$ 2.2.37.1-196.1-h3
$$\Q(\sqrt{-111})$$ $$\Z/6\Z$$ Not in database
$$\Q(\sqrt{-7})$$ $$\Z/2\Z \times \Z/2\Z$$ Not in database
4 $$\Q(\sqrt{-7}, \sqrt{-111})$$ $$\Z/2\Z \times \Z/6\Z$$ Not in database
$$\Q(\sqrt{-3}, \sqrt{37})$$ $$\Z/3\Z \times \Z/6\Z$$ Not in database
$$\Q(\sqrt{-7}, \sqrt{37})$$ $$\Z/2\Z \times \Z/6\Z$$ Not in database
4.2.613312.6 $$\Z/4\Z$$ Not in database

We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.