Properties

Label 19074t
Number of curves $2$
Conductor $19074$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("t1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 19074t

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
19074.w1 19074t1 \([1, 1, 1, -261262, 50884811]\) \(81706955619457/744505344\) \(17970549111668736\) \([2]\) \(322560\) \(1.9412\) \(\Gamma_0(N)\)-optimal
19074.w2 19074t2 \([1, 1, 1, -76302, 121761483]\) \(-2035346265217/264305213568\) \(-6379685329557336192\) \([2]\) \(645120\) \(2.2877\)  

Rank

sage: E.rank()
 

The elliptic curves in class 19074t have rank \(1\).

Complex multiplication

The elliptic curves in class 19074t do not have complex multiplication.

Modular form 19074.2.a.t

sage: E.q_eigenform(10)
 
\(q + q^{2} - q^{3} + q^{4} + 2q^{5} - q^{6} + 4q^{7} + q^{8} + q^{9} + 2q^{10} + q^{11} - q^{12} - 4q^{13} + 4q^{14} - 2q^{15} + q^{16} + q^{18} - 8q^{19} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.