Properties

Label 19074.l
Number of curves $2$
Conductor $19074$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("l1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 19074.l

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
19074.l1 19074r1 \([1, 1, 1, -56650, -5210089]\) \(832972004929/610368\) \(14732799715392\) \([2]\) \(110592\) \(1.4610\) \(\Gamma_0(N)\)-optimal
19074.l2 19074r2 \([1, 1, 1, -45090, -7383369]\) \(-420021471169/727634952\) \(-17563338860711688\) \([2]\) \(221184\) \(1.8075\)  

Rank

sage: E.rank()
 

The elliptic curves in class 19074.l have rank \(0\).

Complex multiplication

The elliptic curves in class 19074.l do not have complex multiplication.

Modular form 19074.2.a.l

sage: E.q_eigenform(10)
 
\(q + q^{2} - q^{3} + q^{4} - 4q^{5} - q^{6} + 2q^{7} + q^{8} + q^{9} - 4q^{10} - q^{11} - q^{12} + 2q^{14} + 4q^{15} + q^{16} + q^{18} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.