# Properties

 Label 19074.e Number of curves 2 Conductor 19074 CM no Rank 0 Graph # Related objects

Show commands for: SageMath
sage: E = EllipticCurve("19074.e1")

sage: E.isogeny_class()

## Elliptic curves in class 19074.e

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
19074.e1 19074c2 [1, 1, 0, -82804, -6008090]  208896
19074.e2 19074c1 [1, 1, 0, -33674, 2294880]  104448 $$\Gamma_0(N)$$-optimal

## Rank

sage: E.rank()

The elliptic curves in class 19074.e have rank $$0$$.

## Modular form 19074.2.a.e

sage: E.q_eigenform(10)

$$q - q^{2} - q^{3} + q^{4} + 2q^{5} + q^{6} + 4q^{7} - q^{8} + q^{9} - 2q^{10} + q^{11} - q^{12} - 4q^{14} - 2q^{15} + q^{16} - q^{18} - 2q^{19} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the LMFDB numbering.

$$\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels. 