Minimal Weierstrass equation
\(y^2+xy=x^3-x^2-325883817x-2224093144784\)
Mordell-Weil group structure
\(\Z/{2}\Z \times \Z/{2}\Z\)
Torsion generators
\( \left(-11536, 5768\right) \), \( \left(20804, -10402\right) \)
Integral points
\( \left(-11536, 5768\right) \), \( \left(20804, -10402\right) \)
Invariants
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
|
|||
Conductor: | \( 190575 \) | = | \(3^{2} \cdot 5^{2} \cdot 7 \cdot 11^{2}\) |
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
|
|||
Discriminant: | \(77889023835519240003515625 \) | = | \(3^{18} \cdot 5^{8} \cdot 7^{4} \cdot 11^{8} \) |
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
|
|||
j-invariant: | \( \frac{189674274234120481}{3859869269025} \) | = | \(3^{-12} \cdot 5^{-2} \cdot 7^{-4} \cdot 11^{-2} \cdot 13^{3} \cdot 193^{3} \cdot 229^{3}\) |
Endomorphism ring: | \(\Z\) | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
Sato-Tate group: | $\mathrm{SU}(2)$ | ||
Faltings height: | \(3.7589625376070843563215170453\dots\) | ||
Stable Faltings height: | \(1.2059898006567940512925429712\dots\) |
BSD invariants
sage: E.rank()
magma: Rank(E);
|
|||
Analytic rank: | \(0\) | ||
sage: E.regulator()
magma: Regulator(E);
|
|||
Regulator: | \(1\) | ||
sage: E.period_lattice().omega()
gp: E.omega[1]
magma: RealPeriod(E);
|
|||
Real period: | \(0.035577145128169064672921527469\dots\) | ||
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
|
|||
Tamagawa product: | \( 256 \) = \( 2^{2}\cdot2^{2}\cdot2^{2}\cdot2^{2} \) | ||
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
|
|||
Torsion order: | \(4\) | ||
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
|
|||
Analytic order of Ш: | \(1\) (exact) |
Modular invariants
Modular form 190575.2.a.dx

For more coefficients, see the Downloads section to the right.
sage: E.modular_degree()
magma: ModularDegree(E);
|
|||
Modular degree: | 44236800 | ||
\( \Gamma_0(N) \)-optimal: | no | ||
Manin constant: | 1 |
Special L-value
\( L(E,1) \) ≈ \( 0.56923432205070503476674443949870405993 \)
Local data
This elliptic curve is not semistable. There are 4 primes of bad reduction:
prime | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(N\)) | ord(\(\Delta\)) | ord\((j)_{-}\) |
---|---|---|---|---|---|---|---|
\(3\) | \(4\) | \(I_{12}^{*}\) | Additive | -1 | 2 | 18 | 12 |
\(5\) | \(4\) | \(I_2^{*}\) | Additive | 1 | 2 | 8 | 2 |
\(7\) | \(4\) | \(I_{4}\) | Split multiplicative | -1 | 1 | 4 | 4 |
\(11\) | \(4\) | \(I_2^{*}\) | Additive | -1 | 2 | 8 | 2 |
Galois representations
The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X25k.
This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^3\Z_2)$ generated by $\left(\begin{array}{rr} 3 & 0 \\ 0 & 5 \end{array}\right),\left(\begin{array}{rr} 3 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 5 & 0 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 5 \end{array}\right),\left(\begin{array}{rr} 3 & 0 \\ 0 & 3 \end{array}\right)$ and has index 24.
The mod \( p \) Galois representation has maximal image \(\GL(2,\F_p)\) for all primes \( p \) except those listed.
prime | Image of Galois representation |
---|---|
\(2\) | Cs |
$p$-adic data
$p$-adic regulators
All \(p\)-adic regulators are identically \(1\) since the rank is \(0\).
No Iwasawa invariant data is available for this curve.
Isogenies
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2 and 4.
Its isogeny class 190575.dx
consists of 3 curves linked by isogenies of
degrees dividing 8.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \times \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{165}) \) | \(\Z/2\Z \times \Z/4\Z\) | Not in database |
$4$ | \(\Q(\sqrt{3}, \sqrt{-55})\) | \(\Z/2\Z \times \Z/4\Z\) | Not in database |
$4$ | \(\Q(\sqrt{-3}, \sqrt{55})\) | \(\Z/2\Z \times \Z/4\Z\) | Not in database |
$4$ | \(\Q(\sqrt{21}, \sqrt{165})\) | \(\Z/2\Z \times \Z/8\Z\) | Not in database |
$8$ | 8.0.189747360000.10 | \(\Z/4\Z \times \Z/4\Z\) | Not in database |
$8$ | 8.0.455583411360000.106 | \(\Z/2\Z \times \Z/8\Z\) | Not in database |
$8$ | Deg 8 | \(\Z/2\Z \times \Z/6\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/2\Z \times \Z/8\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/2\Z \times \Z/8\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/4\Z \times \Z/8\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/2\Z \times \Z/16\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/2\Z \times \Z/12\Z\) | Not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.