Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+y=x^3-79x+342\)
|
(homogenize, simplify) |
\(y^2z+yz^2=x^3-79xz^2+342z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-1264x+21904\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z \oplus \Z \oplus \Z \oplus \Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(3, 11)$ | $2.1625839538769544470651626625$ | $\infty$ |
$(7, 11)$ | $2.2130289365655989259267676398$ | $\infty$ |
$(10, 23)$ | $2.4780333371644737814744173692$ | $\infty$ |
$(-6, 24)$ | $2.6107369971682151195963402675$ | $\infty$ |
$(4, 9)$ | $2.1183039543325753581897064657$ | $\infty$ |
Integral points
\( \left(-10, 11\right) \), \( \left(-10, -12\right) \), \( \left(-8, 21\right) \), \( \left(-8, -22\right) \), \( \left(-7, 23\right) \), \( \left(-7, -24\right) \), \( \left(-6, 24\right) \), \( \left(-6, -25\right) \), \( \left(-3, 23\right) \), \( \left(-3, -24\right) \), \( \left(-1, 20\right) \), \( \left(-1, -21\right) \), \( \left(0, 18\right) \), \( \left(0, -19\right) \), \( \left(3, 11\right) \), \( \left(3, -12\right) \), \( \left(4, 9\right) \), \( \left(4, -10\right) \), \( \left(5, 8\right) \), \( \left(5, -9\right) \), \( \left(7, 11\right) \), \( \left(7, -12\right) \), \( \left(10, 23\right) \), \( \left(10, -24\right) \), \( \left(12, 33\right) \), \( \left(12, -34\right) \), \( \left(14, 44\right) \), \( \left(14, -45\right) \), \( \left(19, 75\right) \), \( \left(19, -76\right) \), \( \left(33, 183\right) \), \( \left(33, -184\right) \), \( \left(38, 228\right) \), \( \left(38, -229\right) \), \( \left(43, 276\right) \), \( \left(43, -277\right) \), \( \left(45, 296\right) \), \( \left(45, -297\right) \), \( \left(62, 483\right) \), \( \left(62, -484\right) \), \( \left(88, 821\right) \), \( \left(88, -822\right) \), \( \left(92, 878\right) \), \( \left(92, -879\right) \), \( \left(97, 951\right) \), \( \left(97, -952\right) \), \( \left(199, 2804\right) \), \( \left(199, -2805\right) \), \( \left(265, 4311\right) \), \( \left(265, -4312\right) \), \( \left(315, 5588\right) \), \( \left(315, -5589\right) \), \( \left(434, 9039\right) \), \( \left(434, -9040\right) \), \( \left(488, 10778\right) \), \( \left(488, -10779\right) \), \( \left(543, 12651\right) \), \( \left(543, -12652\right) \), \( \left(1495, 57803\right) \), \( \left(1495, -57804\right) \), \( \left(1522, 59376\right) \), \( \left(1522, -59377\right) \), \( \left(2040, 92138\right) \), \( \left(2040, -92139\right) \), \( \left(2317, 111528\right) \), \( \left(2317, -111529\right) \), \( \left(5542, 412571\right) \), \( \left(5542, -412572\right) \), \( \left(10120, 1018053\right) \), \( \left(10120, -1018054\right) \), \( \left(38624, 7590770\right) \), \( \left(38624, -7590771\right) \), \( \left(133767, 48924171\right) \), \( \left(133767, -48924172\right) \), \( \left(180445, 76650903\right) \), \( \left(180445, -76650904\right) \), \( \left(18832583, 81726864116\right) \), \( \left(18832583, -81726864117\right) \)
Invariants
Conductor: | $N$ | = | \( 19047851 \) | = | $19047851$ |
|
Discriminant: | $\Delta$ | = | $-19047851$ | = | $-1 \cdot 19047851 $ |
|
j-invariant: | $j$ | = | \( -\frac{54526169088}{19047851} \) | = | $-1 \cdot 2^{12} \cdot 3^{3} \cdot 79^{3} \cdot 19047851^{-1}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.10809173841132348605148320698$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.10809173841132348605148320698$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.6685427761910073$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $1.5030145446538519$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 5$ |
|
Mordell-Weil rank: | $r$ | = | $ 5$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $14.790527570131128481500792169$ |
|
Real period: | $\Omega$ | ≈ | $2.0476407897055164206181597836$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L^{(5)}(E,1)/5!$ | ≈ | $30.285687553864516827653776000 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 30.285687554 \approx L^{(5)}(E,1)/5! & \overset{?}{=} \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 2.047641 \cdot 14.790528 \cdot 1}{1^2} \\ & \approx 30.285687554\end{aligned}$$
Modular invariants
Modular form 19047851.2.a.a
For more coefficients, see the Downloads section to the right.
Modular degree: | Not available |
|
Local data at primes of bad reduction
This elliptic curve is semistable. There is only one prime $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$19047851$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$.
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 38095702 = 2 \cdot 19047851 \), index $2$, genus $0$, and generators
$\left(\begin{array}{rr} 19047853 & 2 \\ 19047853 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 38095701 & 0 \end{array}\right),\left(\begin{array}{rr} 38095701 & 2 \\ 38095700 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[38095702])$ is a degree-$394916402960627353369486110000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/38095702\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$19047851$ | nonsplit multiplicative | $19047852$ | \( 1 \) |
Isogenies
This curve has no rational isogenies. Its isogeny class 19047851.a consists of this curve only.
Twists
This elliptic curve is its own minimal quadratic twist.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.