Show commands for:
SageMath
sage: E = EllipticCurve("di1")
sage: E.isogeny_class()
Elliptic curves in class 189630.di
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
189630.di1 | 189630bg3 | [1, -1, 1, -369788, 86054217] | [2] | 1769472 | |
189630.di2 | 189630bg2 | [1, -1, 1, -39038, -734583] | [2, 2] | 884736 | |
189630.di3 | 189630bg1 | [1, -1, 1, -30218, -2011719] | [2] | 442368 | \(\Gamma_0(N)\)-optimal |
189630.di4 | 189630bg4 | [1, -1, 1, 150592, -5892519] | [2] | 1769472 |
Rank
sage: E.rank()
The elliptic curves in class 189630.di have rank \(0\).
Complex multiplication
The elliptic curves in class 189630.di do not have complex multiplication.Modular form 189630.2.a.di
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.