Show commands for:
SageMath
sage: E = EllipticCurve("y1")
sage: E.isogeny_class()
Elliptic curves in class 189618y
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
189618.o2 | 189618y1 | [1, 0, 1, -2032, 28394] | [2] | 207360 | \(\Gamma_0(N)\)-optimal |
189618.o1 | 189618y2 | [1, 0, 1, -30762, 2073970] | [2] | 414720 |
Rank
sage: E.rank()
The elliptic curves in class 189618y have rank \(0\).
Complex multiplication
The elliptic curves in class 189618y do not have complex multiplication.Modular form 189618.2.a.y
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.