Properties

Label 189618.br3
Conductor $189618$
Discriminant $1.811\times 10^{23}$
j-invariant \( \frac{111675519439697265625}{37528570137307392} \)
CM no
Rank $0$
Torsion structure \(\Z/{2}\Z\)

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

\(y^2+xy=x^3-16955013x+17399039553\) Copy content Toggle raw display (homogenize, simplify)
\(y^2z+xyz=x^3-16955013xz^2+17399039553z^3\) Copy content Toggle raw display (dehomogenize, simplify)
\(y^2=x^3-21973696875x+811835510475366\) Copy content Toggle raw display (homogenize, minimize)

sage: E = EllipticCurve([1, 0, 0, -16955013, 17399039553])
 
gp: E = ellinit([1, 0, 0, -16955013, 17399039553])
 
magma: E := EllipticCurve([1, 0, 0, -16955013, 17399039553]);
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 

Mordell-Weil group structure

\(\Z/{2}\Z\)

Torsion generators

sage: E.torsion_subgroup().gens()
 
gp: elltors(E)
 
magma: TorsionSubgroup(E);
 

\( \left(1106, -553\right) \) Copy content Toggle raw display

Integral points

sage: E.integral_points()
 
magma: IntegralPoints(E);
 

\( \left(1106, -553\right) \) Copy content Toggle raw display

Invariants

sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor: \( 189618 \)  =  $2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17$
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant: $181143240095886555472128 $  =  $2^{8} \cdot 3^{3} \cdot 11^{3} \cdot 13^{8} \cdot 17^{6} $
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
j-invariant: \( \frac{111675519439697265625}{37528570137307392} \)  =  $2^{-8} \cdot 3^{-3} \cdot 5^{15} \cdot 11^{-3} \cdot 13^{-2} \cdot 17^{-6} \cdot 23^{3} \cdot 67^{3}$
Endomorphism ring: $\Z$
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
Sato-Tate group: $\mathrm{SU}(2)$
Faltings height: $3.1652343539158897866243818730\dots$
Stable Faltings height: $1.8827596751851214185976381522\dots$

BSD invariants

sage: E.rank()
 
magma: Rank(E);
 
Analytic rank: $0$
sage: E.regulator()
 
magma: Regulator(E);
 
Regulator: $1$
sage: E.period_lattice().omega()
 
gp: E.omega[1]
 
magma: RealPeriod(E);
 
Real period: $0.093235885250082514925433577344\dots$
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
Tamagawa product: $ 288 $  = $ 2^{3}\cdot3\cdot1\cdot2\cdot( 2 \cdot 3 ) $
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
Torsion order: $2$
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 
Analytic order of Ш: $1$ (exact)
sage: r = E.rank();
 
sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: ar = ellanalyticrank(E);
 
gp: ar[2]/factorial(ar[1])
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Special value: $ L(E,1) $ ≈ $ 6.7129837380059410746312175688 $

Modular invariants

Modular form 189618.2.a.br

sage: E.q_eigenform(20)
 
gp: xy = elltaniyama(E);
 
gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)
 
magma: ModularForm(E);
 

\( q + q^{2} + q^{3} + q^{4} + q^{6} + 4 q^{7} + q^{8} + q^{9} - q^{11} + q^{12} + 4 q^{14} + q^{16} + q^{17} + q^{18} - 2 q^{19} + O(q^{20}) \) Copy content Toggle raw display

For more coefficients, see the Downloads section to the right.

sage: E.modular_degree()
 
magma: ModularDegree(E);
 
Modular degree: 25546752
$ \Gamma_0(N) $-optimal: yes
Manin constant: 1

Local data

This elliptic curve is not semistable. There are 5 primes of bad reduction:

sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
prime Tamagawa number Kodaira symbol Reduction type Root number ord($N$) ord($\Delta$) ord$(j)_{-}$
$2$ $8$ $I_{8}$ Split multiplicative -1 1 8 8
$3$ $3$ $I_{3}$ Split multiplicative -1 1 3 3
$11$ $1$ $I_{3}$ Non-split multiplicative 1 1 3 3
$13$ $2$ $I_{2}^{*}$ Additive 1 2 8 2
$17$ $6$ $I_{6}$ Split multiplicative -1 1 6 6

Galois representations

sage: rho = E.galois_representation();
 
sage: [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.

prime $\ell$ mod-$\ell$ image $\ell$-adic image
$2$ 2B 2.3.0.1
$3$ 3B 3.4.0.1

$p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]
 

All $p$-adic regulators are identically $1$ since the rank is $0$.

No Iwasawa invariant data is available for this curve.

Isogenies

This curve has non-trivial cyclic isogenies of degree $d$ for $d=$ 2, 3 and 6.
Its isogeny class 189618.br consists of 4 curves linked by isogenies of degrees dividing 6.

Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base change curve
$2$ \(\Q(\sqrt{33}) \) \(\Z/2\Z \oplus \Z/2\Z\) Not in database
$2$ \(\Q(\sqrt{13}) \) \(\Z/6\Z\) Not in database
$4$ 4.0.25788048.1 \(\Z/4\Z\) Not in database
$4$ \(\Q(\sqrt{13}, \sqrt{33})\) \(\Z/2\Z \oplus \Z/6\Z\) Not in database
$6$ 6.0.160398576.1 \(\Z/6\Z\) Not in database
$8$ Deg 8 \(\Z/2\Z \oplus \Z/4\Z\) Not in database
$8$ Deg 8 \(\Z/2\Z \oplus \Z/4\Z\) Not in database
$8$ Deg 8 \(\Z/12\Z\) Not in database
$12$ Deg 12 \(\Z/3\Z \oplus \Z/6\Z\) Not in database
$12$ Deg 12 \(\Z/2\Z \oplus \Z/6\Z\) Not in database
$16$ Deg 16 \(\Z/8\Z\) Not in database
$16$ Deg 16 \(\Z/2\Z \oplus \Z/12\Z\) Not in database
$16$ Deg 16 \(\Z/2\Z \oplus \Z/12\Z\) Not in database
$18$ 18.6.29190428169394020783110064839456856791159950816893242664192.1 \(\Z/18\Z\) Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.