Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
189618.a1 |
189618bi4 |
189618.a |
189618bi |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) |
\( 2 \cdot 3^{2} \cdot 11^{8} \cdot 13^{6} \cdot 17 \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.11 |
2B |
$13.84608633$ |
$1$ |
|
$8$ |
$3538944$ |
$2.100735$ |
$803760366578833/65593817586$ |
$[1, 1, 0, -327356, -66950970]$ |
\(y^2+xy=x^3+x^2-327356x-66950970\) |
189618.a2 |
189618bi2 |
189618.a |
189618bi |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) |
\( 2^{2} \cdot 3^{4} \cdot 11^{4} \cdot 13^{6} \cdot 17^{2} \) |
$2$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.4 |
2Cs |
$3.461521584$ |
$1$ |
|
$24$ |
$1769472$ |
$1.754160$ |
$7457162887153/1370924676$ |
$[1, 1, 0, -68786, 5707200]$ |
\(y^2+xy=x^3+x^2-68786x+5707200\) |
189618.a3 |
189618bi1 |
189618.a |
189618bi |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) |
\( 2^{4} \cdot 3^{2} \cdot 11^{2} \cdot 13^{6} \cdot 17 \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.11 |
2B |
$0.865380396$ |
$1$ |
|
$21$ |
$884736$ |
$1.407587$ |
$6411014266033/296208$ |
$[1, 1, 0, -65406, 6410916]$ |
\(y^2+xy=x^3+x^2-65406x+6410916\) |
189618.a4 |
189618bi3 |
189618.a |
189618bi |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) |
\( - 2 \cdot 3^{8} \cdot 11^{2} \cdot 13^{6} \cdot 17^{4} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.16 |
2B |
$3.461521584$ |
$1$ |
|
$12$ |
$3538944$ |
$2.100735$ |
$57258048889007/132611470002$ |
$[1, 1, 0, 135704, 33395146]$ |
\(y^2+xy=x^3+x^2+135704x+33395146\) |
189618.b1 |
189618bj2 |
189618.b |
189618bj |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) |
\( 2^{13} \cdot 3^{26} \cdot 11^{2} \cdot 13^{6} \cdot 17 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1$ |
$9$ |
$3$ |
$0$ |
$70087680$ |
$3.756134$ |
$150476552140919246594353/42832838728685592576$ |
$[1, 1, 0, -187270086, 703054931220]$ |
\(y^2+xy=x^3+x^2-187270086x+703054931220\) |
189618.b2 |
189618bj1 |
189618.b |
189618bj |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) |
\( 2^{26} \cdot 3^{13} \cdot 11 \cdot 13^{6} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1$ |
$9$ |
$3$ |
$1$ |
$35043840$ |
$3.409561$ |
$7722211175253055152433/340131399900069888$ |
$[1, 1, 0, -69592006, -214810557164]$ |
\(y^2+xy=x^3+x^2-69592006x-214810557164\) |
189618.c1 |
189618bk1 |
189618.c |
189618bk |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) |
\( - 2 \cdot 3^{4} \cdot 11 \cdot 13^{9} \cdot 17^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1.392394924$ |
$1$ |
|
$4$ |
$1225728$ |
$1.707083$ |
$1259362112399/1131450606$ |
$[1, 1, 0, 38022, 2136906]$ |
\(y^2+xy=x^3+x^2+38022x+2136906\) |
189618.d1 |
189618bl1 |
189618.d |
189618bl |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) |
\( - 2^{5} \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$8.195674818$ |
$1$ |
|
$4$ |
$42240$ |
$-0.028231$ |
$-111996625/17952$ |
$[1, 1, 0, -55, -203]$ |
\(y^2+xy=x^3+x^2-55x-203\) |
189618.e1 |
189618bm1 |
189618.e |
189618bm |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) |
\( - 2^{12} \cdot 3^{3} \cdot 11^{3} \cdot 13^{3} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.6.0.1 |
3Ns |
$1$ |
$1$ |
|
$0$ |
$1057536$ |
$1.596067$ |
$-3115334495125/723183538176$ |
$[1, 1, 0, -3955, -1921811]$ |
\(y^2+xy=x^3+x^2-3955x-1921811\) |
189618.f1 |
189618bn1 |
189618.f |
189618bn |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) |
\( - 2^{9} \cdot 3^{2} \cdot 11 \cdot 13^{8} \cdot 17^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1.927962069$ |
$1$ |
|
$8$ |
$2201472$ |
$1.911081$ |
$-1749947265625/14648832$ |
$[1, 1, 0, -234575, 43946661]$ |
\(y^2+xy=x^3+x^2-234575x+43946661\) |
189618.g1 |
189618bo1 |
189618.g |
189618bo |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) |
\( 2^{12} \cdot 3^{7} \cdot 11 \cdot 13^{8} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$31.63863674$ |
$1$ |
|
$1$ |
$9934848$ |
$2.767151$ |
$66342819962001390625/4812668669952$ |
$[1, 1, 0, -14253125, -20716222899]$ |
\(y^2+xy=x^3+x^2-14253125x-20716222899\) |
189618.g2 |
189618bo2 |
189618.g |
189618bo |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) |
\( - 2^{6} \cdot 3^{14} \cdot 11^{2} \cdot 13^{10} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$15.81931837$ |
$1$ |
|
$0$ |
$19869696$ |
$3.113724$ |
$-54315282059491182625/17983956399469632$ |
$[1, 1, 0, -13333765, -23503170803]$ |
\(y^2+xy=x^3+x^2-13333765x-23503170803\) |
189618.h1 |
189618bp1 |
189618.h |
189618bp |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) |
\( - 2^{13} \cdot 3^{4} \cdot 11^{7} \cdot 13^{7} \cdot 17^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$21525504$ |
$3.163193$ |
$165568631260031/48580832601759744$ |
$[1, 1, 0, 193333, -23298004803]$ |
\(y^2+xy=x^3+x^2+193333x-23298004803\) |
189618.i1 |
189618bs4 |
189618.i |
189618bs |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) |
\( 2^{9} \cdot 3^{4} \cdot 11 \cdot 13^{18} \cdot 17^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$194.3561975$ |
$1$ |
|
$0$ |
$1588543488$ |
$5.210472$ |
$1748094148784980747354970849498497/887694600425282263291392$ |
$[1, 1, 0, -424131381339, -106316153461934307]$ |
\(y^2+xy=x^3+x^2-424131381339x-106316153461934307\) |
189618.i2 |
189618bs3 |
189618.i |
189618bs |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) |
\( 2^{9} \cdot 3 \cdot 11 \cdot 13^{9} \cdot 17^{16} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$194.3561975$ |
$1$ |
|
$0$ |
$1588543488$ |
$5.210472$ |
$4474676144192042711273397261697/1806328356954994499451382272$ |
$[1, 1, 0, -58018434139, 2958123786906397]$ |
\(y^2+xy=x^3+x^2-58018434139x+2958123786906397\) |
189618.i3 |
189618bs2 |
189618.i |
189618bs |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) |
\( 2^{18} \cdot 3^{2} \cdot 11^{2} \cdot 13^{12} \cdot 17^{8} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$97.17809879$ |
$1$ |
|
$2$ |
$794271744$ |
$4.863899$ |
$433744050935826360922067531137/9612122270219882316693504$ |
$[1, 1, 0, -26651601499, -1642317815705315]$ |
\(y^2+xy=x^3+x^2-26651601499x-1642317815705315\) |
189618.i4 |
189618bs1 |
189618.i |
189618bs |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) |
\( - 2^{36} \cdot 3 \cdot 11^{4} \cdot 13^{9} \cdot 17^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$48.58904939$ |
$1$ |
|
$1$ |
$397135872$ |
$4.517326$ |
$79374649975090937760383/553856914190911653543936$ |
$[1, 1, 0, 151311781, -78662657863395]$ |
\(y^2+xy=x^3+x^2+151311781x-78662657863395\) |
189618.j1 |
189618bt1 |
189618.j |
189618bt |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) |
\( 2^{6} \cdot 3 \cdot 11 \cdot 13^{6} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.4 |
2B |
$5.923454278$ |
$1$ |
|
$3$ |
$207360$ |
$0.852235$ |
$81182737/35904$ |
$[1, 1, 0, -1524, -11760]$ |
\(y^2+xy=x^3+x^2-1524x-11760\) |
189618.j2 |
189618bt2 |
189618.j |
189618bt |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) |
\( - 2^{3} \cdot 3^{2} \cdot 11^{2} \cdot 13^{6} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.5 |
2B |
$2.961727139$ |
$1$ |
|
$4$ |
$414720$ |
$1.198809$ |
$3288008303/2517768$ |
$[1, 1, 0, 5236, -80712]$ |
\(y^2+xy=x^3+x^2+5236x-80712\) |
189618.k1 |
189618br1 |
189618.k |
189618br |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) |
\( - 2^{7} \cdot 3^{3} \cdot 11 \cdot 13^{10} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$4$ |
$2$ |
$0$ |
$5031936$ |
$2.413822$ |
$309147739823/186772608$ |
$[1, 1, 0, 727711, -49803723]$ |
\(y^2+xy=x^3+x^2+727711x-49803723\) |
189618.l1 |
189618bq6 |
189618.l |
189618bq |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) |
\( 2^{2} \cdot 3^{2} \cdot 11^{2} \cdot 13^{6} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.24.0.6 |
2B |
$14.30071632$ |
$1$ |
|
$0$ |
$9437184$ |
$2.720406$ |
$6812873765474836663297/74052$ |
$[1, 1, 0, -66745539, -209912851143]$ |
\(y^2+xy=x^3+x^2-66745539x-209912851143\) |
189618.l2 |
189618bq4 |
189618.l |
189618bq |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) |
\( 2^{4} \cdot 3^{4} \cdot 11^{4} \cdot 13^{6} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.13 |
2Cs |
$7.150358162$ |
$1$ |
|
$2$ |
$4718592$ |
$2.373829$ |
$1663303207415737537/5483698704$ |
$[1, 1, 0, -4171599, -3281186475]$ |
\(y^2+xy=x^3+x^2-4171599x-3281186475\) |
189618.l3 |
189618bq5 |
189618.l |
189618bq |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) |
\( - 2^{2} \cdot 3^{8} \cdot 11^{8} \cdot 13^{6} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.91 |
2B |
$3.575179081$ |
$1$ |
|
$2$ |
$9437184$ |
$2.720406$ |
$-1595514095015181697/95635786040388$ |
$[1, 1, 0, -4114139, -3375892047]$ |
\(y^2+xy=x^3+x^2-4114139x-3375892047\) |
189618.l4 |
189618bq2 |
189618.l |
189618bq |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) |
\( 2^{8} \cdot 3^{2} \cdot 11^{2} \cdot 13^{6} \cdot 17^{4} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.15 |
2Cs |
$3.575179081$ |
$1$ |
|
$6$ |
$2359296$ |
$2.027256$ |
$423108074414017/23284318464$ |
$[1, 1, 0, -264319, -49865915]$ |
\(y^2+xy=x^3+x^2-264319x-49865915\) |
189618.l5 |
189618bq1 |
189618.l |
189618bq |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) |
\( 2^{16} \cdot 3 \cdot 11 \cdot 13^{6} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.24.0.7 |
2B |
$7.150358162$ |
$1$ |
|
$1$ |
$1179648$ |
$1.680683$ |
$2533811507137/625016832$ |
$[1, 1, 0, -47999, 3045957]$ |
\(y^2+xy=x^3+x^2-47999x+3045957\) |
189618.l6 |
189618bq3 |
189618.l |
189618bq |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) |
\( - 2^{4} \cdot 3 \cdot 11 \cdot 13^{6} \cdot 17^{8} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.92 |
2B |
$7.150358162$ |
$1$ |
|
$2$ |
$4718592$ |
$2.373829$ |
$137763859017023/3683199928848$ |
$[1, 1, 0, 181841, -200578763]$ |
\(y^2+xy=x^3+x^2+181841x-200578763\) |
189618.m1 |
189618w1 |
189618.m |
189618w |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) |
\( 2^{6} \cdot 3 \cdot 11 \cdot 13^{6} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.4 |
2B |
$1$ |
$1$ |
|
$1$ |
$903168$ |
$1.326843$ |
$832972004929/610368$ |
$[1, 0, 1, -33128, -2322058]$ |
\(y^2+xy+y=x^3-33128x-2322058\) |
189618.m2 |
189618w2 |
189618.m |
189618w |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) |
\( - 2^{3} \cdot 3^{2} \cdot 11^{2} \cdot 13^{6} \cdot 17^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.5 |
2B |
$1$ |
$1$ |
|
$0$ |
$1806336$ |
$1.673416$ |
$-420021471169/727634952$ |
$[1, 0, 1, -26368, -3295498]$ |
\(y^2+xy+y=x^3-26368x-3295498\) |
189618.n1 |
189618x4 |
189618.n |
189618x |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) |
\( 2^{7} \cdot 3^{8} \cdot 11^{2} \cdot 13^{6} \cdot 17 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.11 |
2B |
$1$ |
$4$ |
$2$ |
$0$ |
$24772608$ |
$3.124741$ |
$306234591284035366263793/1727485056$ |
$[1, 0, 1, -237317747, -1407179633650]$ |
\(y^2+xy+y=x^3-237317747x-1407179633650\) |
189618.n2 |
189618x2 |
189618.n |
189618x |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) |
\( 2^{14} \cdot 3^{4} \cdot 11^{4} \cdot 13^{6} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.4 |
2Cs |
$1$ |
$1$ |
|
$2$ |
$12386304$ |
$2.778168$ |
$74768347616680342513/5615307472896$ |
$[1, 0, 1, -14832627, -21987276530]$ |
\(y^2+xy+y=x^3-14832627x-21987276530\) |
189618.n3 |
189618x3 |
189618.n |
189618x |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) |
\( - 2^{7} \cdot 3^{2} \cdot 11^{8} \cdot 13^{6} \cdot 17^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.16 |
2B |
$1$ |
$1$ |
|
$0$ |
$24772608$ |
$3.124741$ |
$-60992553706117024753/20624795251201152$ |
$[1, 0, 1, -13859187, -24997542386]$ |
\(y^2+xy+y=x^3-13859187x-24997542386\) |
189618.n4 |
189618x1 |
189618.n |
189618x |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) |
\( 2^{28} \cdot 3^{2} \cdot 11^{2} \cdot 13^{6} \cdot 17 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.11 |
2B |
$1$ |
$1$ |
|
$1$ |
$6193152$ |
$2.431595$ |
$22106889268753393/4969545596928$ |
$[1, 0, 1, -988147, -295745266]$ |
\(y^2+xy+y=x^3-988147x-295745266\) |
189618.o1 |
189618y2 |
189618.o |
189618y |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) |
\( 2 \cdot 3^{2} \cdot 11^{2} \cdot 13^{6} \cdot 17 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1$ |
$1$ |
|
$0$ |
$414720$ |
$1.224463$ |
$666940371553/37026$ |
$[1, 0, 1, -30762, 2073970]$ |
\(y^2+xy+y=x^3-30762x+2073970\) |
189618.o2 |
189618y1 |
189618.o |
189618y |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) |
\( 2^{2} \cdot 3 \cdot 11 \cdot 13^{6} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1$ |
$1$ |
|
$1$ |
$207360$ |
$0.877890$ |
$192100033/38148$ |
$[1, 0, 1, -2032, 28394]$ |
\(y^2+xy+y=x^3-2032x+28394\) |
189618.p1 |
189618ba3 |
189618.p |
189618ba |
$4$ |
$6$ |
\( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) |
\( 2^{10} \cdot 3 \cdot 11 \cdot 13^{6} \cdot 17^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.6.0.4, 3.4.0.1 |
2B, 3B |
$1$ |
$9$ |
$3$ |
$1$ |
$74649600$ |
$3.723419$ |
$505384091400037554067434625/815656731648$ |
$[1, 0, 1, -2804481996, -57164824360694]$ |
\(y^2+xy+y=x^3-2804481996x-57164824360694\) |
189618.p2 |
189618ba4 |
189618.p |
189618ba |
$4$ |
$6$ |
\( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) |
\( - 2^{5} \cdot 3^{2} \cdot 11^{2} \cdot 13^{6} \cdot 17^{12} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.6.0.5, 3.4.0.1 |
2B, 3B |
$1$ |
$9$ |
$3$ |
$0$ |
$149299200$ |
$4.069992$ |
$-505369473241574671219626625/20303219722982711328$ |
$[1, 0, 1, -2804454956, -57165981802486]$ |
\(y^2+xy+y=x^3-2804454956x-57165981802486\) |
189618.p3 |
189618ba1 |
189618.p |
189618ba |
$4$ |
$6$ |
\( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) |
\( 2^{30} \cdot 3^{3} \cdot 11^{3} \cdot 13^{6} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.6.0.4, 3.4.0.1 |
2B, 3B |
$1$ |
$1$ |
|
$1$ |
$24883200$ |
$3.174114$ |
$959024269496848362625/11151660319506432$ |
$[1, 0, 1, -34720716, -77954209526]$ |
\(y^2+xy+y=x^3-34720716x-77954209526\) |
189618.p4 |
189618ba2 |
189618.p |
189618ba |
$4$ |
$6$ |
\( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) |
\( - 2^{15} \cdot 3^{6} \cdot 11^{6} \cdot 13^{6} \cdot 17^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.6.0.5, 3.4.0.1 |
2B, 3B |
$1$ |
$1$ |
|
$0$ |
$49766400$ |
$3.520687$ |
$-7966267523043306625/3534510366354604032$ |
$[1, 0, 1, -7031756, -198855284470]$ |
\(y^2+xy+y=x^3-7031756x-198855284470\) |
189618.q1 |
189618bb1 |
189618.q |
189618bb |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) |
\( 2^{2} \cdot 3 \cdot 11 \cdot 13^{6} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.4 |
2B |
$1$ |
$1$ |
|
$1$ |
$552960$ |
$1.238899$ |
$858729462625/38148$ |
$[1, 0, 1, -33466, 2353496]$ |
\(y^2+xy+y=x^3-33466x+2353496\) |
189618.q2 |
189618bb2 |
189618.q |
189618bb |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) |
\( - 2 \cdot 3^{2} \cdot 11^{2} \cdot 13^{6} \cdot 17^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.5 |
2B |
$1$ |
$1$ |
|
$0$ |
$1105920$ |
$1.585472$ |
$-735091890625/181908738$ |
$[1, 0, 1, -31776, 2602264]$ |
\(y^2+xy+y=x^3-31776x+2602264\) |
189618.r1 |
189618z1 |
189618.r |
189618z |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) |
\( - 2 \cdot 3^{5} \cdot 11^{3} \cdot 13^{4} \cdot 17 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$0.268954436$ |
$1$ |
|
$14$ |
$288000$ |
$1.006107$ |
$-672937149625/10996722$ |
$[1, 0, 1, -5581, 162242]$ |
\(y^2+xy+y=x^3-5581x+162242\) |
189618.s1 |
189618bc1 |
189618.s |
189618bc |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) |
\( - 2 \cdot 3^{6} \cdot 11 \cdot 13^{9} \cdot 17^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$2965248$ |
$2.231628$ |
$-41756642210557/4634982$ |
$[1, 0, 1, -1587928, -770389540]$ |
\(y^2+xy+y=x^3-1587928x-770389540\) |
189618.t1 |
189618bd1 |
189618.t |
189618bd |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) |
\( - 2^{21} \cdot 3^{9} \cdot 11 \cdot 13^{8} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$4$ |
$2$ |
$0$ |
$18869760$ |
$2.929272$ |
$-95773342660124233/7719031406592$ |
$[1, 0, 1, -8906135, 10918577594]$ |
\(y^2+xy+y=x^3-8906135x+10918577594\) |
189618.u1 |
189618be1 |
189618.u |
189618be |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) |
\( 2^{14} \cdot 3^{5} \cdot 11 \cdot 13^{6} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.4 |
2B |
$4.722805594$ |
$1$ |
|
$3$ |
$2419200$ |
$1.807035$ |
$81706955619457/744505344$ |
$[1, 0, 1, -152780, 22790666]$ |
\(y^2+xy+y=x^3-152780x+22790666\) |
189618.u2 |
189618be2 |
189618.u |
189618be |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) |
\( - 2^{7} \cdot 3^{10} \cdot 11^{2} \cdot 13^{6} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.5 |
2B |
$2.361402797$ |
$1$ |
|
$4$ |
$4838400$ |
$2.153610$ |
$-2035346265217/264305213568$ |
$[1, 0, 1, -44620, 54459914]$ |
\(y^2+xy+y=x^3-44620x+54459914\) |
189618.v1 |
189618bf1 |
189618.v |
189618bf |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) |
\( - 2^{11} \cdot 3^{2} \cdot 11 \cdot 13^{9} \cdot 17^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$4$ |
$2$ |
$0$ |
$3624192$ |
$2.101048$ |
$57111104051/58595328$ |
$[1, 0, 1, 176263, -25026532]$ |
\(y^2+xy+y=x^3+176263x-25026532\) |
189618.w1 |
189618bg1 |
189618.w |
189618bg |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) |
\( - 2 \cdot 3^{2} \cdot 11 \cdot 13^{8} \cdot 17^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$5286528$ |
$2.250225$ |
$-625422146089/4779238662$ |
$[1, 0, 1, -166469, -98542546]$ |
\(y^2+xy+y=x^3-166469x-98542546\) |
189618.x1 |
189618bh1 |
189618.x |
189618bh |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) |
\( - 2^{11} \cdot 3^{3} \cdot 11^{5} \cdot 13^{8} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$4$ |
$2$ |
$0$ |
$13178880$ |
$2.534370$ |
$477017570471/151393093632$ |
$[1, 0, 1, 152096, 534193454]$ |
\(y^2+xy+y=x^3+152096x+534193454\) |
189618.y1 |
189618m3 |
189618.y |
189618m |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) |
\( 2^{2} \cdot 3^{20} \cdot 11^{3} \cdot 13^{6} \cdot 17 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$1$ |
$4$ |
$2$ |
$0$ |
$29491200$ |
$3.172741$ |
$12534210458299016895673/315581882565708$ |
$[1, 1, 1, -81785779, 284644874405]$ |
\(y^2+xy+y=x^3+x^2-81785779x+284644874405\) |
189618.y2 |
189618m2 |
189618.y |
189618m |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) |
\( 2^{4} \cdot 3^{10} \cdot 11^{6} \cdot 13^{6} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$1$ |
$1$ |
|
$2$ |
$14745600$ |
$2.826168$ |
$3423676911662954233/483711578981136$ |
$[1, 1, 1, -5306519, 4088357021]$ |
\(y^2+xy+y=x^3+x^2-5306519x+4088357021\) |