Learn more

Refine search


Results (1-50 of 84 matches)

Next   Download to        
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation
189618.a1 189618.a \( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) $2$ $\Z/2\Z$ $13.84608633$ $[1, 1, 0, -327356, -66950970]$ \(y^2+xy=x^3+x^2-327356x-66950970\)
189618.a2 189618.a \( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) $2$ $\Z/2\Z\oplus\Z/2\Z$ $3.461521584$ $[1, 1, 0, -68786, 5707200]$ \(y^2+xy=x^3+x^2-68786x+5707200\)
189618.a3 189618.a \( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) $2$ $\Z/2\Z$ $0.865380396$ $[1, 1, 0, -65406, 6410916]$ \(y^2+xy=x^3+x^2-65406x+6410916\)
189618.a4 189618.a \( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) $2$ $\Z/2\Z$ $3.461521584$ $[1, 1, 0, 135704, 33395146]$ \(y^2+xy=x^3+x^2+135704x+33395146\)
189618.b1 189618.b \( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -187270086, 703054931220]$ \(y^2+xy=x^3+x^2-187270086x+703054931220\)
189618.b2 189618.b \( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -69592006, -214810557164]$ \(y^2+xy=x^3+x^2-69592006x-214810557164\)
189618.c1 189618.c \( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) $1$ $\mathsf{trivial}$ $1.392394924$ $[1, 1, 0, 38022, 2136906]$ \(y^2+xy=x^3+x^2+38022x+2136906\)
189618.d1 189618.d \( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) $2$ $\mathsf{trivial}$ $8.195674818$ $[1, 1, 0, -55, -203]$ \(y^2+xy=x^3+x^2-55x-203\)
189618.e1 189618.e \( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -3955, -1921811]$ \(y^2+xy=x^3+x^2-3955x-1921811\)
189618.f1 189618.f \( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) $2$ $\mathsf{trivial}$ $1.927962069$ $[1, 1, 0, -234575, 43946661]$ \(y^2+xy=x^3+x^2-234575x+43946661\)
189618.g1 189618.g \( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) $1$ $\Z/2\Z$ $31.63863674$ $[1, 1, 0, -14253125, -20716222899]$ \(y^2+xy=x^3+x^2-14253125x-20716222899\)
189618.g2 189618.g \( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) $1$ $\Z/2\Z$ $15.81931837$ $[1, 1, 0, -13333765, -23503170803]$ \(y^2+xy=x^3+x^2-13333765x-23503170803\)
189618.h1 189618.h \( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, 193333, -23298004803]$ \(y^2+xy=x^3+x^2+193333x-23298004803\)
189618.i1 189618.i \( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) $1$ $\Z/2\Z$ $194.3561975$ $[1, 1, 0, -424131381339, -106316153461934307]$ \(y^2+xy=x^3+x^2-424131381339x-106316153461934307\)
189618.i2 189618.i \( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) $1$ $\Z/2\Z$ $194.3561975$ $[1, 1, 0, -58018434139, 2958123786906397]$ \(y^2+xy=x^3+x^2-58018434139x+2958123786906397\)
189618.i3 189618.i \( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $97.17809879$ $[1, 1, 0, -26651601499, -1642317815705315]$ \(y^2+xy=x^3+x^2-26651601499x-1642317815705315\)
189618.i4 189618.i \( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) $1$ $\Z/2\Z$ $48.58904939$ $[1, 1, 0, 151311781, -78662657863395]$ \(y^2+xy=x^3+x^2+151311781x-78662657863395\)
189618.j1 189618.j \( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) $1$ $\Z/2\Z$ $5.923454278$ $[1, 1, 0, -1524, -11760]$ \(y^2+xy=x^3+x^2-1524x-11760\)
189618.j2 189618.j \( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) $1$ $\Z/2\Z$ $2.961727139$ $[1, 1, 0, 5236, -80712]$ \(y^2+xy=x^3+x^2+5236x-80712\)
189618.k1 189618.k \( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, 727711, -49803723]$ \(y^2+xy=x^3+x^2+727711x-49803723\)
189618.l1 189618.l \( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) $1$ $\Z/2\Z$ $14.30071632$ $[1, 1, 0, -66745539, -209912851143]$ \(y^2+xy=x^3+x^2-66745539x-209912851143\)
189618.l2 189618.l \( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $7.150358162$ $[1, 1, 0, -4171599, -3281186475]$ \(y^2+xy=x^3+x^2-4171599x-3281186475\)
189618.l3 189618.l \( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) $1$ $\Z/2\Z$ $3.575179081$ $[1, 1, 0, -4114139, -3375892047]$ \(y^2+xy=x^3+x^2-4114139x-3375892047\)
189618.l4 189618.l \( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $3.575179081$ $[1, 1, 0, -264319, -49865915]$ \(y^2+xy=x^3+x^2-264319x-49865915\)
189618.l5 189618.l \( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) $1$ $\Z/2\Z$ $7.150358162$ $[1, 1, 0, -47999, 3045957]$ \(y^2+xy=x^3+x^2-47999x+3045957\)
189618.l6 189618.l \( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) $1$ $\Z/2\Z$ $7.150358162$ $[1, 1, 0, 181841, -200578763]$ \(y^2+xy=x^3+x^2+181841x-200578763\)
189618.m1 189618.m \( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -33128, -2322058]$ \(y^2+xy+y=x^3-33128x-2322058\)
189618.m2 189618.m \( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -26368, -3295498]$ \(y^2+xy+y=x^3-26368x-3295498\)
189618.n1 189618.n \( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -237317747, -1407179633650]$ \(y^2+xy+y=x^3-237317747x-1407179633650\)
189618.n2 189618.n \( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 1, -14832627, -21987276530]$ \(y^2+xy+y=x^3-14832627x-21987276530\)
189618.n3 189618.n \( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -13859187, -24997542386]$ \(y^2+xy+y=x^3-13859187x-24997542386\)
189618.n4 189618.n \( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -988147, -295745266]$ \(y^2+xy+y=x^3-988147x-295745266\)
189618.o1 189618.o \( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -30762, 2073970]$ \(y^2+xy+y=x^3-30762x+2073970\)
189618.o2 189618.o \( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -2032, 28394]$ \(y^2+xy+y=x^3-2032x+28394\)
189618.p1 189618.p \( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -2804481996, -57164824360694]$ \(y^2+xy+y=x^3-2804481996x-57164824360694\)
189618.p2 189618.p \( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -2804454956, -57165981802486]$ \(y^2+xy+y=x^3-2804454956x-57165981802486\)
189618.p3 189618.p \( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -34720716, -77954209526]$ \(y^2+xy+y=x^3-34720716x-77954209526\)
189618.p4 189618.p \( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -7031756, -198855284470]$ \(y^2+xy+y=x^3-7031756x-198855284470\)
189618.q1 189618.q \( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -33466, 2353496]$ \(y^2+xy+y=x^3-33466x+2353496\)
189618.q2 189618.q \( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -31776, 2602264]$ \(y^2+xy+y=x^3-31776x+2602264\)
189618.r1 189618.r \( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) $2$ $\mathsf{trivial}$ $0.268954436$ $[1, 0, 1, -5581, 162242]$ \(y^2+xy+y=x^3-5581x+162242\)
189618.s1 189618.s \( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -1587928, -770389540]$ \(y^2+xy+y=x^3-1587928x-770389540\)
189618.t1 189618.t \( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -8906135, 10918577594]$ \(y^2+xy+y=x^3-8906135x+10918577594\)
189618.u1 189618.u \( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) $1$ $\Z/2\Z$ $4.722805594$ $[1, 0, 1, -152780, 22790666]$ \(y^2+xy+y=x^3-152780x+22790666\)
189618.u2 189618.u \( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) $1$ $\Z/2\Z$ $2.361402797$ $[1, 0, 1, -44620, 54459914]$ \(y^2+xy+y=x^3-44620x+54459914\)
189618.v1 189618.v \( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, 176263, -25026532]$ \(y^2+xy+y=x^3+176263x-25026532\)
189618.w1 189618.w \( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -166469, -98542546]$ \(y^2+xy+y=x^3-166469x-98542546\)
189618.x1 189618.x \( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, 152096, 534193454]$ \(y^2+xy+y=x^3+152096x+534193454\)
189618.y1 189618.y \( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -81785779, 284644874405]$ \(y^2+xy+y=x^3+x^2-81785779x+284644874405\)
189618.y2 189618.y \( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 1, -5306519, 4088357021]$ \(y^2+xy+y=x^3+x^2-5306519x+4088357021\)
Next   Download to