Properties

Label 188496cs
Number of curves $2$
Conductor $188496$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cs1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 188496cs have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(7\)\(1 - T\)
\(11\)\(1 - T\)
\(17\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - T + 5 T^{2}\) 1.5.ab
\(13\) \( 1 - 7 T + 13 T^{2}\) 1.13.ah
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 - 7 T + 23 T^{2}\) 1.23.ah
\(29\) \( 1 - 5 T + 29 T^{2}\) 1.29.af
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 188496cs do not have complex multiplication.

Modular form 188496.2.a.cs

Copy content sage:E.q_eigenform(10)
 
\(q + 4 q^{5} - q^{7} + q^{11} - q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 188496cs

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
188496.dx2 188496cs1 \([0, 0, 0, -551043, 38082690]\) \(229524442504083/125055451136\) \(10082166557531701248\) \([2]\) \(4644864\) \(2.3373\) \(\Gamma_0(N)\)-optimal
188496.dx1 188496cs2 \([0, 0, 0, -5251203, -4600975230]\) \(198631853028508563/1517849044096\) \(122371369922320662528\) \([2]\) \(9289728\) \(2.6839\)