# Properties

 Label 187200.bb1 Conductor $187200$ Discriminant $-9.354\times 10^{19}$ j-invariant $$\frac{261568120}{10024911}$$ CM no Rank $1$ Torsion structure trivial

# Related objects

Show commands for: Magma / Pari/GP / SageMath

## Minimal Weierstrass equation

sage: E = EllipticCurve([0, 0, 0, 280500, 461810000])

gp: E = ellinit([0, 0, 0, 280500, 461810000])

magma: E := EllipticCurve([0, 0, 0, 280500, 461810000]);

$$y^2=x^3+280500x+461810000$$

## Mordell-Weil group structure

$$\Z$$

### Infinite order Mordell-Weil generator and height

sage: E.gens()

magma: Generators(E);

 $$P$$ = $$\left(250, 23400\right)$$ $$\hat{h}(P)$$ ≈ $0.29820441764299566366246095846$

## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

$$(-400,\pm 16900)$$, $$(250,\pm 23400)$$, $$(3994,\pm 255528)$$

## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor: $$187200$$ = $$2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 13$$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $$-93544449523200000000$$ = $$-1 \cdot 2^{15} \cdot 3^{9} \cdot 5^{8} \cdot 13^{5}$$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$\frac{261568120}{10024911}$$ = $$2^{3} \cdot 3^{-3} \cdot 5 \cdot 11^{3} \cdot 13^{-5} \cdot 17^{3}$$ Endomorphism ring: $$\Z$$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) Sato-Tate group: $\mathrm{SU}(2)$ Faltings height: $$2.5119569323449305204801799038\dots$$ Stable Faltings height: $$0.023258204021543788277177578034\dots$$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Analytic rank: $$1$$ sage: E.regulator()  magma: Regulator(E); Regulator: $$0.29820441764299566366246095846\dots$$ sage: E.period_lattice().omega()  gp: E.omega[1]  magma: RealPeriod(E); Real period: $$0.14388587168983063249290318796\dots$$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $$120$$  = $$2^{2}\cdot2\cdot3\cdot5$$ sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E)); Torsion order: $$1$$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $$1$$ (exact)

## Modular invariants

Modular form 187200.2.a.bb

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

magma: ModularForm(E);

$$q - 4q^{7} + q^{13} - 3q^{19} + O(q^{20})$$

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 4147200 $$\Gamma_0(N)$$-optimal: yes Manin constant: 1

#### Special L-value

sage: r = E.rank();

sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()

gp: ar = ellanalyticrank(E);

gp: ar[2]/factorial(ar[1])

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

$$L'(E,1)$$ ≈ $$5.1488883089184888180170162602340810666$$

## Local data

This elliptic curve is not semistable. There are 4 primes of bad reduction:

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$2$$ $$4$$ $$I_5^{*}$$ Additive -1 6 15 0
$$3$$ $$2$$ $$I_3^{*}$$ Additive -1 2 9 3
$$5$$ $$3$$ $$IV^{*}$$ Additive -1 2 8 0
$$13$$ $$5$$ $$I_{5}$$ Split multiplicative -1 1 5 5

## Galois representations

The 2-adic representation attached to this elliptic curve is surjective.

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The mod $$p$$ Galois representation has maximal image $$\GL(2,\F_p)$$ for all primes $$p$$ .

## $p$-adic data

### $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]

$$p$$-adic regulators are not yet computed for curves that are not $$\Gamma_0$$-optimal.

No Iwasawa invariant data is available for this curve.

## Isogenies

This curve has no rational isogenies. Its isogeny class 187200.bb consists of this curve only.

## Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:

 $[K:\Q]$ $E(K)_{\rm tors}$ Base change curve $K$ $3$ 3.1.7800.1 $$\Z/2\Z$$ Not in database $6$ 6.0.18982080000.1 $$\Z/2\Z \times \Z/2\Z$$ Not in database $8$ Deg 8 $$\Z/3\Z$$ Not in database $12$ Deg 12 $$\Z/4\Z$$ Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.