Show commands:
SageMath
E = EllipticCurve("s1")
E.isogeny_class()
Elliptic curves in class 1872.s
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
1872.s1 | 1872t2 | \([0, 0, 0, -183, -830]\) | \(3631696/507\) | \(94618368\) | \([2]\) | \(768\) | \(0.25678\) | |
1872.s2 | 1872t1 | \([0, 0, 0, -48, 115]\) | \(1048576/117\) | \(1364688\) | \([2]\) | \(384\) | \(-0.089794\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 1872.s have rank \(0\).
Complex multiplication
The elliptic curves in class 1872.s do not have complex multiplication.Modular form 1872.2.a.s
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.