Properties

Label 1872.s
Number of curves $2$
Conductor $1872$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("s1")
 
E.isogeny_class()
 

Elliptic curves in class 1872.s

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1872.s1 1872t2 \([0, 0, 0, -183, -830]\) \(3631696/507\) \(94618368\) \([2]\) \(768\) \(0.25678\)  
1872.s2 1872t1 \([0, 0, 0, -48, 115]\) \(1048576/117\) \(1364688\) \([2]\) \(384\) \(-0.089794\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 1872.s have rank \(0\).

Complex multiplication

The elliptic curves in class 1872.s do not have complex multiplication.

Modular form 1872.2.a.s

sage: E.q_eigenform(10)
 
\(q + 4 q^{5} + 2 q^{7} - 4 q^{11} + q^{13} - 2 q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.