Properties

Label 1872.p
Number of curves $2$
Conductor $1872$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("p1")
 
E.isogeny_class()
 

Elliptic curves in class 1872.p

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1872.p1 1872j2 \([0, 0, 0, -9099, 333882]\) \(1033364331/676\) \(54500179968\) \([2]\) \(2304\) \(0.99980\)  
1872.p2 1872j1 \([0, 0, 0, -459, 7290]\) \(-132651/208\) \(-16769286144\) \([2]\) \(1152\) \(0.65322\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 1872.p have rank \(0\).

Complex multiplication

The elliptic curves in class 1872.p do not have complex multiplication.

Modular form 1872.2.a.p

sage: E.q_eigenform(10)
 
\(q + 2 q^{5} + 2 q^{7} - 4 q^{11} - q^{13} + 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.