Properties

Label 1872.n
Number of curves $4$
Conductor $1872$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("n1")
 
E.isogeny_class()
 

Elliptic curves in class 1872.n

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1872.n1 1872h3 \([0, 0, 0, -2739, -53822]\) \(3044193988/85293\) \(63670883328\) \([2]\) \(2048\) \(0.85214\)  
1872.n2 1872h2 \([0, 0, 0, -399, 1870]\) \(37642192/13689\) \(2554695936\) \([2, 2]\) \(1024\) \(0.50557\)  
1872.n3 1872h1 \([0, 0, 0, -354, 2563]\) \(420616192/117\) \(1364688\) \([2]\) \(512\) \(0.15899\) \(\Gamma_0(N)\)-optimal
1872.n4 1872h4 \([0, 0, 0, 1221, 13210]\) \(269676572/257049\) \(-191886050304\) \([2]\) \(2048\) \(0.85214\)  

Rank

sage: E.rank()
 

The elliptic curves in class 1872.n have rank \(1\).

Complex multiplication

The elliptic curves in class 1872.n do not have complex multiplication.

Modular form 1872.2.a.n

sage: E.q_eigenform(10)
 
\(q + 2 q^{5} - 4 q^{7} + q^{13} - 2 q^{17} - 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.