Show commands:
SageMath
E = EllipticCurve("n1")
E.isogeny_class()
Elliptic curves in class 1872.n
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
1872.n1 | 1872h3 | \([0, 0, 0, -2739, -53822]\) | \(3044193988/85293\) | \(63670883328\) | \([2]\) | \(2048\) | \(0.85214\) | |
1872.n2 | 1872h2 | \([0, 0, 0, -399, 1870]\) | \(37642192/13689\) | \(2554695936\) | \([2, 2]\) | \(1024\) | \(0.50557\) | |
1872.n3 | 1872h1 | \([0, 0, 0, -354, 2563]\) | \(420616192/117\) | \(1364688\) | \([2]\) | \(512\) | \(0.15899\) | \(\Gamma_0(N)\)-optimal |
1872.n4 | 1872h4 | \([0, 0, 0, 1221, 13210]\) | \(269676572/257049\) | \(-191886050304\) | \([2]\) | \(2048\) | \(0.85214\) |
Rank
sage: E.rank()
The elliptic curves in class 1872.n have rank \(1\).
Complex multiplication
The elliptic curves in class 1872.n do not have complex multiplication.Modular form 1872.2.a.n
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.