Properties

Label 1872.j
Number of curves $2$
Conductor $1872$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("j1")
 
E.isogeny_class()
 

Elliptic curves in class 1872.j

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1872.j1 1872c2 \([0, 0, 0, -615, -5866]\) \(137842000/117\) \(21835008\) \([2]\) \(512\) \(0.33544\)  
1872.j2 1872c1 \([0, 0, 0, -30, -133]\) \(-256000/507\) \(-5913648\) \([2]\) \(256\) \(-0.011129\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 1872.j have rank \(0\).

Complex multiplication

The elliptic curves in class 1872.j do not have complex multiplication.

Modular form 1872.2.a.j

sage: E.q_eigenform(10)
 
\(q + 6 q^{11} - q^{13} - 2 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.