Show commands:
SageMath
E = EllipticCurve("i1")
E.isogeny_class()
Elliptic curves in class 1872.i
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
1872.i1 | 1872p4 | \([0, 0, 0, -6735, -197494]\) | \(181037698000/14480427\) | \(2702395208448\) | \([2]\) | \(2304\) | \(1.1288\) | |
1872.i2 | 1872p3 | \([0, 0, 0, -6600, -206377]\) | \(2725888000000/19773\) | \(230632272\) | \([2]\) | \(1152\) | \(0.78219\) | |
1872.i3 | 1872p2 | \([0, 0, 0, -1335, 18722]\) | \(1409938000/4563\) | \(851565312\) | \([2]\) | \(768\) | \(0.57946\) | |
1872.i4 | 1872p1 | \([0, 0, 0, -120, 11]\) | \(16384000/9477\) | \(110539728\) | \([2]\) | \(384\) | \(0.23288\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 1872.i have rank \(0\).
Complex multiplication
The elliptic curves in class 1872.i do not have complex multiplication.Modular form 1872.2.a.i
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.