Properties

Label 1872.i
Number of curves $4$
Conductor $1872$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("i1")
 
E.isogeny_class()
 

Elliptic curves in class 1872.i

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1872.i1 1872p4 \([0, 0, 0, -6735, -197494]\) \(181037698000/14480427\) \(2702395208448\) \([2]\) \(2304\) \(1.1288\)  
1872.i2 1872p3 \([0, 0, 0, -6600, -206377]\) \(2725888000000/19773\) \(230632272\) \([2]\) \(1152\) \(0.78219\)  
1872.i3 1872p2 \([0, 0, 0, -1335, 18722]\) \(1409938000/4563\) \(851565312\) \([2]\) \(768\) \(0.57946\)  
1872.i4 1872p1 \([0, 0, 0, -120, 11]\) \(16384000/9477\) \(110539728\) \([2]\) \(384\) \(0.23288\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 1872.i have rank \(0\).

Complex multiplication

The elliptic curves in class 1872.i do not have complex multiplication.

Modular form 1872.2.a.i

sage: E.q_eigenform(10)
 
\(q - 2 q^{7} + q^{13} + 6 q^{17} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.