Properties

Label 1872.h
Number of curves $4$
Conductor $1872$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("h1")
 
E.isogeny_class()
 

Elliptic curves in class 1872.h

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1872.h1 1872q3 \([0, 0, 0, -10011, -385526]\) \(37159393753/1053\) \(3144241152\) \([2]\) \(2048\) \(0.92409\)  
1872.h2 1872q4 \([0, 0, 0, -2811, 51946]\) \(822656953/85683\) \(255848067072\) \([4]\) \(2048\) \(0.92409\)  
1872.h3 1872q2 \([0, 0, 0, -651, -5510]\) \(10218313/1521\) \(4541681664\) \([2, 2]\) \(1024\) \(0.57751\)  
1872.h4 1872q1 \([0, 0, 0, 69, -470]\) \(12167/39\) \(-116453376\) \([2]\) \(512\) \(0.23094\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 1872.h have rank \(0\).

Complex multiplication

The elliptic curves in class 1872.h do not have complex multiplication.

Modular form 1872.2.a.h

sage: E.q_eigenform(10)
 
\(q - 2 q^{5} + 4 q^{7} + 4 q^{11} + q^{13} - 2 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.