Properties

Label 1872.f
Number of curves $2$
Conductor $1872$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("f1")
 
E.isogeny_class()
 

Elliptic curves in class 1872.f

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1872.f1 1872o1 \([0, 0, 0, -36, -81]\) \(442368/13\) \(151632\) \([2]\) \(192\) \(-0.22857\) \(\Gamma_0(N)\)-optimal
1872.f2 1872o2 \([0, 0, 0, 9, -270]\) \(432/169\) \(-31539456\) \([2]\) \(384\) \(0.11801\)  

Rank

sage: E.rank()
 

The elliptic curves in class 1872.f have rank \(1\).

Complex multiplication

The elliptic curves in class 1872.f do not have complex multiplication.

Modular form 1872.2.a.f

sage: E.q_eigenform(10)
 
\(q - 2 q^{5} + 2 q^{7} - 2 q^{11} - q^{13} - 6 q^{17} + 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.