Show commands:
SageMath
E = EllipticCurve("e1")
E.isogeny_class()
Elliptic curves in class 1872.e
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
1872.e1 | 1872i3 | \([0, 0, 0, -7491, -249550]\) | \(62275269892/39\) | \(29113344\) | \([2]\) | \(1024\) | \(0.75243\) | |
1872.e2 | 1872i2 | \([0, 0, 0, -471, -3850]\) | \(61918288/1521\) | \(283855104\) | \([2, 2]\) | \(512\) | \(0.40586\) | |
1872.e3 | 1872i1 | \([0, 0, 0, -66, 119]\) | \(2725888/1053\) | \(12282192\) | \([2]\) | \(256\) | \(0.059284\) | \(\Gamma_0(N)\)-optimal |
1872.e4 | 1872i4 | \([0, 0, 0, 69, -12166]\) | \(48668/85683\) | \(-63962016768\) | \([4]\) | \(1024\) | \(0.75243\) |
Rank
sage: E.rank()
The elliptic curves in class 1872.e have rank \(1\).
Complex multiplication
The elliptic curves in class 1872.e do not have complex multiplication.Modular form 1872.2.a.e
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.