Properties

Label 1872.e
Number of curves $4$
Conductor $1872$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("e1")
 
E.isogeny_class()
 

Elliptic curves in class 1872.e

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1872.e1 1872i3 \([0, 0, 0, -7491, -249550]\) \(62275269892/39\) \(29113344\) \([2]\) \(1024\) \(0.75243\)  
1872.e2 1872i2 \([0, 0, 0, -471, -3850]\) \(61918288/1521\) \(283855104\) \([2, 2]\) \(512\) \(0.40586\)  
1872.e3 1872i1 \([0, 0, 0, -66, 119]\) \(2725888/1053\) \(12282192\) \([2]\) \(256\) \(0.059284\) \(\Gamma_0(N)\)-optimal
1872.e4 1872i4 \([0, 0, 0, 69, -12166]\) \(48668/85683\) \(-63962016768\) \([4]\) \(1024\) \(0.75243\)  

Rank

sage: E.rank()
 

The elliptic curves in class 1872.e have rank \(1\).

Complex multiplication

The elliptic curves in class 1872.e do not have complex multiplication.

Modular form 1872.2.a.e

sage: E.q_eigenform(10)
 
\(q - 2 q^{5} + q^{13} - 2 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.