Properties

Label 1872.d
Number of curves $2$
Conductor $1872$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("d1")
 
E.isogeny_class()
 

Elliptic curves in class 1872.d

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1872.d1 1872b2 \([0, 0, 0, -51, -94]\) \(530604/169\) \(4672512\) \([2]\) \(256\) \(-0.016441\)  
1872.d2 1872b1 \([0, 0, 0, 9, -10]\) \(11664/13\) \(-89856\) \([2]\) \(128\) \(-0.36302\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 1872.d have rank \(1\).

Complex multiplication

The elliptic curves in class 1872.d do not have complex multiplication.

Modular form 1872.2.a.d

sage: E.q_eigenform(10)
 
\(q - 2 q^{5} - 2 q^{7} + 4 q^{11} - q^{13} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.