Show commands:
SageMath
E = EllipticCurve("d1")
E.isogeny_class()
Elliptic curves in class 1872.d
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
1872.d1 | 1872b2 | \([0, 0, 0, -51, -94]\) | \(530604/169\) | \(4672512\) | \([2]\) | \(256\) | \(-0.016441\) | |
1872.d2 | 1872b1 | \([0, 0, 0, 9, -10]\) | \(11664/13\) | \(-89856\) | \([2]\) | \(128\) | \(-0.36302\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 1872.d have rank \(1\).
Complex multiplication
The elliptic curves in class 1872.d do not have complex multiplication.Modular form 1872.2.a.d
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.