Properties

Label 1872.b
Number of curves $2$
Conductor $1872$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("b1")
 
E.isogeny_class()
 

Elliptic curves in class 1872.b

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1872.b1 1872g1 \([0, 0, 0, -5862, 162295]\) \(1909913257984/129730653\) \(1513178336592\) \([2]\) \(3840\) \(1.0857\) \(\Gamma_0(N)\)-optimal
1872.b2 1872g2 \([0, 0, 0, 5073, 698110]\) \(77366117936/1172914587\) \(-218894011884288\) \([2]\) \(7680\) \(1.4323\)  

Rank

sage: E.rank()
 

The elliptic curves in class 1872.b have rank \(0\).

Complex multiplication

The elliptic curves in class 1872.b do not have complex multiplication.

Modular form 1872.2.a.b

sage: E.q_eigenform(10)
 
\(q - 4 q^{5} - 2 q^{11} - q^{13} - 2 q^{17} - 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.