Properties

Label 185020.o4
Conductor $185020$
Discriminant $1.439\times 10^{14}$
j-invariant \( \frac{643956736}{15125} \)
CM no
Rank $2$
Torsion structure \(\Z/{2}\Z\)

Related objects

Downloads

Learn more about

Show commands for: Magma / Pari/GP / SageMath

Minimal Weierstrass equation

sage: E = EllipticCurve([0, -1, 0, -38125, 2819250]) # or
 
sage: E = EllipticCurve("185020m1")
 
gp: E = ellinit([0, -1, 0, -38125, 2819250]) \\ or
 
gp: E = ellinit("185020m1")
 
magma: E := EllipticCurve([0, -1, 0, -38125, 2819250]); // or
 
magma: E := EllipticCurve("185020m1");
 

\( y^2 = x^{3} - x^{2} - 38125 x + 2819250 \)

Mordell-Weil group structure

\(\Z^2 \times \Z/{2}\Z\)

Infinite order Mordell-Weil generators and heights

sage: E.gens()
 
magma: Generators(E);
 

\(P\) =  \( \left(90, 330\right) \)\( \left(\frac{2410}{9}, -\frac{92510}{27}\right) \)
\(\hat{h}(P)\) ≈  $3.5684503956622167$$2.1249839831358366$

Torsion generators

sage: E.torsion_subgroup().gens()
 
gp: elltors(E)
 
magma: TorsionSubgroup(E);
 

\( \left(126, 0\right) \)

Integral points

sage: E.integral_points()
 
magma: IntegralPoints(E);
 

\((-198,\pm 1602)\), \((90,\pm 330)\), \( \left(126, 0\right) \)

Invariants

sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor: \( 185020 \)  =  \(2^{2} \cdot 5 \cdot 11 \cdot 29^{2}\)
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant: \(143947243682000 \)  =  \(2^{4} \cdot 5^{3} \cdot 11^{2} \cdot 29^{6} \)
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
j-invariant: \( \frac{643956736}{15125} \)  =  \(2^{17} \cdot 5^{-3} \cdot 11^{-2} \cdot 17^{3}\)
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
Sato-Tate group: $\mathrm{SU}(2)$

BSD invariants

sage: E.rank()
 
magma: Rank(E);
 
Rank: \(2\)
sage: E.regulator()
 
magma: Regulator(E);
 
Regulator: \(5.10326975987\)
sage: E.period_lattice().omega()
 
gp: E.omega[1]
 
magma: RealPeriod(E);
 
Real period: \(0.579471561746\)
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
Tamagawa product: \( 24 \)  = \( 1\cdot3\cdot2\cdot2^{2} \)
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
Torsion order: \(2\)
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 
Analytic order of Ш: \(1\) (rounded)

Modular invariants

Modular form 185020.2.a.o

sage: E.q_eigenform(20)
 
gp: xy = elltaniyama(E);
 
gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)
 
magma: ModularForm(E);
 

\( q + 2q^{3} + q^{5} - 4q^{7} + q^{9} + q^{11} - 4q^{13} + 2q^{15} + 4q^{19} + O(q^{20}) \)

For more coefficients, see the Downloads section to the right.

sage: E.modular_degree()
 
magma: ModularDegree(E);
 
Modular degree: 870912
\( \Gamma_0(N) \)-optimal: yes
Manin constant: 1

Special L-value

sage: r = E.rank();
 
sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: ar = ellanalyticrank(E);
 
gp: ar[2]/factorial(ar[1])
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 

\( L^{(2)}(E,1)/2! \) ≈ \( 17.7431981866 \)

Local data

This elliptic curve is not semistable.

sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
prime Tamagawa number Kodaira symbol Reduction type Root number ord(\(N\)) ord(\(\Delta\)) ord\((j)_{-}\)
\(2\) \(1\) \( IV \) Additive -1 2 4 0
\(5\) \(3\) \( I_{3} \) Split multiplicative -1 1 3 3
\(11\) \(2\) \( I_{2} \) Split multiplicative -1 1 2 2
\(29\) \(4\) \( I_0^{*} \) Additive 1 2 6 0

Galois representations

The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X6.

This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^1\Z_2)$ generated by $\left(\begin{array}{rr} 1 & 1 \\ 0 & 1 \end{array}\right)$ and has index 3.

sage: rho = E.galois_representation();
 
sage: [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

The mod \( p \) Galois representation has maximal image \(\GL(2,\F_p)\) for all primes \( p \) except those listed.

prime Image of Galois representation
\(2\) B
\(3\) B

$p$-adic data

$p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]
 

\(p\)-adic regulators are not yet computed for curves that are not \(\Gamma_0\)-optimal.

No Iwasawa invariant data is available for this curve.

Isogenies

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 185020.o consists of 4 curves linked by isogenies of degrees dividing 6.

Growth of torsion in number fields

The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base change curve
$2$ \(\Q(\sqrt{5}) \) \(\Z/2\Z \times \Z/2\Z\) Not in database
$2$ \(\Q(\sqrt{29}) \) \(\Z/6\Z\) Not in database
$4$ \(\Q(\sqrt{5}, \sqrt{29})\) \(\Z/2\Z \times \Z/6\Z\) Not in database
$4$ 4.4.32563520.3 \(\Z/4\Z\) Not in database
$6$ 6.0.154258278768.4 \(\Z/6\Z\) Not in database

We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.