Properties

Label 1850.n
Number of curves $1$
Conductor $1850$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("n1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 1850.n

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1850.n1 1850p1 \([1, 1, 1, -13, -1469]\) \(-625/2368\) \(-925000000\) \([]\) \(1080\) \(0.39938\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 1850.n1 has rank \(0\).

Complex multiplication

The elliptic curves in class 1850.n do not have complex multiplication.

Modular form 1850.2.a.n

sage: E.q_eigenform(10)
 
\(q + q^{2} + 2 q^{3} + q^{4} + 2 q^{6} + q^{8} + q^{9} + 4 q^{11} + 2 q^{12} - 2 q^{13} + q^{16} + 8 q^{17} + q^{18} - 5 q^{19} + O(q^{20})\)  Toggle raw display