Properties

Label 1850.m
Number of curves $1$
Conductor $1850$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("m1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 1850.m

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1850.m1 1850k1 \([1, 0, 0, -3, -13]\) \(-121945/2738\) \(-68450\) \([]\) \(192\) \(-0.39140\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 1850.m1 has rank \(1\).

Complex multiplication

The elliptic curves in class 1850.m do not have complex multiplication.

Modular form 1850.2.a.m

sage: E.q_eigenform(10)
 
\(q + q^{2} + q^{3} + q^{4} + q^{6} - 4 q^{7} + q^{8} - 2 q^{9} + 3 q^{11} + q^{12} - 6 q^{13} - 4 q^{14} + q^{16} - 3 q^{17} - 2 q^{18} - 3 q^{19} + O(q^{20})\) Copy content Toggle raw display