Properties

Label 1850.l
Number of curves $1$
Conductor $1850$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("l1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 1850.l

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1850.l1 1850n1 \([1, -1, 1, -10, 17]\) \(-804357/296\) \(-37000\) \([]\) \(144\) \(-0.41318\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 1850.l1 has rank \(1\).

Complex multiplication

The elliptic curves in class 1850.l do not have complex multiplication.

Modular form 1850.2.a.l

sage: E.q_eigenform(10)
 
\(q + q^{2} + q^{4} + q^{7} + q^{8} - 3 q^{9} - 3 q^{11} - 4 q^{13} + q^{14} + q^{16} - 3 q^{17} - 3 q^{18} + O(q^{20})\) Copy content Toggle raw display