Properties

Label 185.c
Number of curves 22
Conductor 185185
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("c1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 185.c have rank 11.

L-function data

 
Bad L-factors:
Prime L-Factor
551+T1 + T
37371+T1 + T
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
22 1T+2T2 1 - T + 2 T^{2} 1.2.ab
33 1+2T+3T2 1 + 2 T + 3 T^{2} 1.3.c
77 1+2T+7T2 1 + 2 T + 7 T^{2} 1.7.c
1111 1+11T2 1 + 11 T^{2} 1.11.a
1313 1+2T+13T2 1 + 2 T + 13 T^{2} 1.13.c
1717 12T+17T2 1 - 2 T + 17 T^{2} 1.17.ac
1919 12T+19T2 1 - 2 T + 19 T^{2} 1.19.ac
2323 1+8T+23T2 1 + 8 T + 23 T^{2} 1.23.i
2929 12T+29T2 1 - 2 T + 29 T^{2} 1.29.ac
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 185.c do not have complex multiplication.

Modular form 185.2.a.c

Copy content sage:E.q_eigenform(10)
 
q+q22q3q4q52q62q73q8+q9q10+2q122q132q14+2q15q16+2q17+q18+2q19+O(q20)q + q^{2} - 2 q^{3} - q^{4} - q^{5} - 2 q^{6} - 2 q^{7} - 3 q^{8} + q^{9} - q^{10} + 2 q^{12} - 2 q^{13} - 2 q^{14} + 2 q^{15} - q^{16} + 2 q^{17} + q^{18} + 2 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 185.c

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
185.c1 185c1 [1,0,1,4,3][1, 0, 1, -4, -3] 4826809/1854826809/185 185185 [2][2] 66 0.79707-0.79707 Γ0(N)\Gamma_0(N)-optimal
185.c2 185c2 [1,0,1,1,9][1, 0, 1, 1, -9] 357911/34225357911/34225 34225-34225 [2][2] 1212 0.45050-0.45050