Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3+x^2-544x+88592\)
|
(homogenize, simplify) |
|
\(y^2z=x^3+x^2z-544xz^2+88592z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-44091x+64715814\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{4}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(-13, 306)$ | $2.3602545574266187240782761787$ | $\infty$ |
| $(32, 324)$ | $0$ | $4$ |
Integral points
\( \left(-49, 0\right) \), \((-13,\pm 306)\), \((32,\pm 324)\), \((176,\pm 2340)\)
Invariants
| Conductor: | $N$ | = | \( 1848 \) | = | $2^{3} \cdot 3 \cdot 7 \cdot 11$ |
|
| Discriminant: | $\Delta$ | = | $-3394147857408$ | = | $-1 \cdot 2^{10} \cdot 3^{16} \cdot 7 \cdot 11 $ |
|
| j-invariant: | $j$ | = | \( -\frac{17418812548}{3314597517} \) | = | $-1 \cdot 2^{2} \cdot 3^{-16} \cdot 7^{-1} \cdot 11^{-1} \cdot 23^{3} \cdot 71^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.0837307684576274340923306130$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.50610811799100634291130384512$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0168103364445589$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.827374344046264$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $2.3602545574266187240782761787$ |
|
| Real period: | $\Omega$ | ≈ | $0.64762689748721407196839728698$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 32 $ = $ 2\cdot2^{4}\cdot1\cdot1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $3.0571286726125172465654069780 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 3.057128673 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.647627 \cdot 2.360255 \cdot 32}{4^2} \\ & \approx 3.057128673\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 3072 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $III^{*}$ | additive | -1 | 3 | 10 | 0 |
| $3$ | $16$ | $I_{16}$ | split multiplicative | -1 | 1 | 16 | 16 |
| $7$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
| $11$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 16.48.0.29 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 1232 = 2^{4} \cdot 7 \cdot 11 \), index $192$, genus $1$, and generators
$\left(\begin{array}{rr} 456 & 1 \\ 191 & 10 \end{array}\right),\left(\begin{array}{rr} 720 & 5 \\ 131 & 1218 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1217 & 16 \\ 1216 & 17 \end{array}\right),\left(\begin{array}{rr} 13 & 16 \\ 572 & 633 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right),\left(\begin{array}{rr} 15 & 2 \\ 1134 & 1219 \end{array}\right),\left(\begin{array}{rr} 5 & 4 \\ 1228 & 1229 \end{array}\right),\left(\begin{array}{rr} 786 & 935 \\ 715 & 790 \end{array}\right)$.
The torsion field $K:=\Q(E[1232])$ is a degree-$3406233600$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1232\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 77 = 7 \cdot 11 \) |
| $3$ | split multiplicative | $4$ | \( 616 = 2^{3} \cdot 7 \cdot 11 \) |
| $7$ | nonsplit multiplicative | $8$ | \( 264 = 2^{3} \cdot 3 \cdot 11 \) |
| $11$ | nonsplit multiplicative | $12$ | \( 168 = 2^{3} \cdot 3 \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 4 and 8.
Its isogeny class 1848j
consists of 6 curves linked by isogenies of
degrees dividing 8.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{4}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-77}) \) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $2$ | \(\Q(\sqrt{22}) \) | \(\Z/8\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-14}) \) | \(\Z/8\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-14}, \sqrt{22})\) | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $8$ | 8.0.853698068844544.1 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.13659169101512704.12 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $8$ | deg 8 | \(\Z/16\Z\) | not in database |
| $8$ | deg 8 | \(\Z/16\Z\) | not in database |
| $8$ | 8.2.6376709892123648.7 | \(\Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/24\Z\) | not in database |
| $16$ | deg 16 | \(\Z/24\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | split | ord | nonsplit | nonsplit | ord | ord | ord | ss | ord | ord | ord | ord | ord | ord |
| $\lambda$-invariant(s) | - | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1 |
| $\mu$-invariant(s) | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.