Properties

Label 1848d
Number of curves $1$
Conductor $1848$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("d1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 1848d

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1848.k1 1848d1 \([0, 1, 0, -1660, 26417]\) \(-31636584484096/1331669031\) \(-21306704496\) \([]\) \(1440\) \(0.74844\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 1848d1 has rank \(0\).

Complex multiplication

The elliptic curves in class 1848d do not have complex multiplication.

Modular form 1848.2.a.d

sage: E.q_eigenform(10)
 
\(q + q^{3} + q^{5} - q^{7} + q^{9} - q^{11} + 3q^{13} + q^{15} + 7q^{19} + O(q^{20})\)  Toggle raw display