Show commands for:
SageMath

sage: E = EllipticCurve("br1")

sage: E.isogeny_class()

## Elliptic curves in class 184041br

sage: E.isogeny_class().curves

LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|

184041.bs2 | 184041br1 | [1, -1, 0, -3834, 358177] | [] | 336960 | \(\Gamma_0(N)\)-optimal |

184041.bs1 | 184041br2 | [1, -1, 0, -5525064, -4997459219] | [] | 3706560 |

## Rank

sage: E.rank()

The elliptic curves in class 184041br have rank \(1\).

## Complex multiplication

The elliptic curves in class 184041br do not have complex multiplication.## Modular form 184041.2.a.br

sage: E.q_eigenform(10)

## Isogeny matrix

sage: E.isogeny_class().matrix()

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 11 \\ 11 & 1 \end{array}\right)\)

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with Cremona labels.