# Properties

 Label 184041br Number of curves $2$ Conductor $184041$ CM no Rank $1$ Graph

# Related objects

Show commands for: SageMath
sage: E = EllipticCurve("br1")

sage: E.isogeny_class()

## Elliptic curves in class 184041br

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
184041.bs2 184041br1 [1, -1, 0, -3834, 358177] [] 336960 $$\Gamma_0(N)$$-optimal
184041.bs1 184041br2 [1, -1, 0, -5525064, -4997459219] [] 3706560

## Rank

sage: E.rank()

The elliptic curves in class 184041br have rank $$1$$.

## Complex multiplication

The elliptic curves in class 184041br do not have complex multiplication.

## Modular form 184041.2.a.br

sage: E.q_eigenform(10)

$$q + q^{2} - q^{4} + q^{5} + 2q^{7} - 3q^{8} + q^{10} + 2q^{14} - q^{16} + 5q^{17} - 6q^{19} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the Cremona numbering.

$$\left(\begin{array}{rr} 1 & 11 \\ 11 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with Cremona labels.