Properties

Label 1840.h
Number of curves $1$
Conductor $1840$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("h1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 1840.h

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1840.h1 1840i1 \([0, 1, 0, -10, -17]\) \(-7626496/575\) \(-9200\) \([]\) \(96\) \(-0.49105\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 1840.h1 has rank \(0\).

Complex multiplication

The elliptic curves in class 1840.h do not have complex multiplication.

Modular form 1840.2.a.h

sage: E.q_eigenform(10)
 
\(q + q^{3} + q^{5} + 2q^{7} - 2q^{9} + 4q^{11} + q^{13} + q^{15} + 4q^{19} + O(q^{20})\)  Toggle raw display