Properties

Label 1840.f
Number of curves $1$
Conductor $1840$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("f1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 1840.f

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1840.f1 1840b1 \([0, 0, 0, 1468, 2844]\) \(1366664500224/804542875\) \(-205962976000\) \([]\) \(1440\) \(0.86029\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 1840.f1 has rank \(0\).

Complex multiplication

The elliptic curves in class 1840.f do not have complex multiplication.

Modular form 1840.2.a.f

sage: E.q_eigenform(10)
 
\(q + q^{5} - q^{7} - 3q^{9} + 6q^{11} - 2q^{13} - 3q^{17} + 6q^{19} + O(q^{20})\)  Toggle raw display