Properties

Label 18259.a
Number of curves $3$
Conductor $18259$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("a1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 18259.a

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
18259.a1 18259a3 \([0, -1, 1, -739329, 244930132]\) \(-50357871050752/19\) \(-16862569939\) \([]\) \(90720\) \(1.7504\)  
18259.a2 18259a2 \([0, -1, 1, -8969, 350827]\) \(-89915392/6859\) \(-6087387747979\) \([]\) \(30240\) \(1.2011\)  
18259.a3 18259a1 \([0, -1, 1, 641, 62]\) \(32768/19\) \(-16862569939\) \([]\) \(10080\) \(0.65182\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 18259.a have rank \(1\).

Complex multiplication

The elliptic curves in class 18259.a do not have complex multiplication.

Modular form 18259.2.a.a

sage: E.q_eigenform(10)
 
\(q + 2q^{3} - 2q^{4} + 3q^{5} - q^{7} + q^{9} - 3q^{11} - 4q^{12} + 4q^{13} + 6q^{15} + 4q^{16} + 3q^{17} + q^{19} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrr} 1 & 3 & 9 \\ 3 & 1 & 3 \\ 9 & 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.