# Properties

 Label 18240k Number of curves $4$ Conductor $18240$ CM no Rank $0$ Graph # Related objects

Show commands for: SageMath
sage: E = EllipticCurve("18240.t1")

sage: E.isogeny_class()

## Elliptic curves in class 18240k

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
18240.t4 18240k1 [0, -1, 0, -641, 10881]  18432 $$\Gamma_0(N)$$-optimal
18240.t3 18240k2 [0, -1, 0, -12161, 520065] [2, 2] 36864
18240.t2 18240k3 [0, -1, 0, -14081, 346881]  73728
18240.t1 18240k4 [0, -1, 0, -194561, 33096705]  73728

## Rank

sage: E.rank()

The elliptic curves in class 18240k have rank $$0$$.

## Modular form 18240.2.a.t

sage: E.q_eigenform(10)

$$q - q^{3} - q^{5} + 4q^{7} + q^{9} + 4q^{11} + 2q^{13} + q^{15} - 2q^{17} + q^{19} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the Cremona numbering.

$$\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with Cremona labels. 