Properties

 Label 18240.cp1 Conductor $18240$ Discriminant $1.167\times 10^{13}$ j-invariant $$\frac{26487576322129}{44531250}$$ CM no Rank $0$ Torsion structure $$\Z/{2}\Z$$

Related objects

Show commands for: Magma / Pari/GP / SageMath

Minimal Weierstrass equation

sage: E = EllipticCurve([0, 1, 0, -39745, -3058657]) # or

sage: E = EllipticCurve("18240bn3")

gp: E = ellinit([0, 1, 0, -39745, -3058657]) \\ or

gp: E = ellinit("18240bn3")

magma: E := EllipticCurve([0, 1, 0, -39745, -3058657]); // or

magma: E := EllipticCurve("18240bn3");

$$y^2 = x^{3} + x^{2} - 39745 x - 3058657$$

Mordell-Weil group structure

$$\Z/{2}\Z$$

Torsion generators

sage: E.torsion_subgroup().gens()

gp: elltors(E)

magma: TorsionSubgroup(E);

$$\left(-119, 0\right)$$

Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

$$\left(-119, 0\right)$$

Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor: $$18240$$ = $$2^{6} \cdot 3 \cdot 5 \cdot 19$$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $$11673600000000$$ = $$2^{19} \cdot 3 \cdot 5^{8} \cdot 19$$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$\frac{26487576322129}{44531250}$$ = $$2^{-1} \cdot 3^{-1} \cdot 5^{-8} \cdot 13^{3} \cdot 19^{-1} \cdot 2293^{3}$$ Endomorphism ring: $$\Z$$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) Sato-Tate group: $\mathrm{SU}(2)$

BSD invariants

 sage: E.rank()  magma: Rank(E); Rank: $$0$$ sage: E.regulator()  magma: Regulator(E); Regulator: $$1$$ sage: E.period_lattice().omega()  gp: E.omega[1]  magma: RealPeriod(E); Real period: $$0.338159719009$$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $$32$$  = $$2^{2}\cdot1\cdot2^{3}\cdot1$$ sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E)); Torsion order: $$2$$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $$1$$ (exact)

Modular invariants

Modular form 18240.2.a.cp

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

magma: ModularForm(E);

$$q + q^{3} + q^{5} + q^{9} - 4q^{11} - 2q^{13} + q^{15} + 2q^{17} + q^{19} + O(q^{20})$$

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 49152 $$\Gamma_0(N)$$-optimal: no Manin constant: 1

Special L-value

sage: r = E.rank();

sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()

gp: ar = ellanalyticrank(E);

gp: ar[2]/factorial(ar[1])

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

$$L(E,1)$$ ≈ $$2.70527775207$$

Local data

This elliptic curve is not semistable.

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$2$$ $$4$$ $$I_9^{*}$$ Additive 1 6 19 1
$$3$$ $$1$$ $$I_{1}$$ Split multiplicative -1 1 1 1
$$5$$ $$8$$ $$I_{8}$$ Split multiplicative -1 1 8 8
$$19$$ $$1$$ $$I_{1}$$ Split multiplicative -1 1 1 1

Galois representations

The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X33f.

This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^3\Z_2)$ generated by $\left(\begin{array}{rr} 7 & 7 \\ 0 & 3 \end{array}\right),\left(\begin{array}{rr} 7 & 7 \\ 4 & 3 \end{array}\right),\left(\begin{array}{rr} 5 & 0 \\ 0 & 3 \end{array}\right)$ and has index 24.

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The mod $$p$$ Galois representation has maximal image $$\GL(2,\F_p)$$ for all primes $$p$$ except those listed.

prime Image of Galois representation
$$2$$ B

$p$-adic data

$p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]

All $$p$$-adic regulators are identically $$1$$ since the rank is $$0$$.

Iwasawa invariants

$p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 19 add split split split - 1 1 1 - 0 0 0

All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 3$ of good reduction are zero.

An entry - indicates that the invariants are not computed because the reduction is additive.

Isogenies

This curve has non-trivial cyclic isogenies of degree $$d$$ for $$d=$$ 2 and 4.
Its isogeny class 18240.cp consists of 4 curves linked by isogenies of degrees dividing 4.

Growth of torsion in number fields

The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base change curve
$2$ $$\Q(\sqrt{-1})$$ $$\Z/4\Z$$ Not in database
$2$ $$\Q(\sqrt{-114})$$ $$\Z/4\Z$$ Not in database
$2$ $$\Q(\sqrt{114})$$ $$\Z/2\Z \times \Z/2\Z$$ Not in database
$4$ $$\Q(i, \sqrt{114})$$ $$\Z/2\Z \times \Z/4\Z$$ Not in database
$4$ 4.2.379275264.3 $$\Z/2\Z \times \Z/4\Z$$ Not in database

We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.