Properties

Label 1824.h
Number of curves $1$
Conductor $1824$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("h1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 1824.h1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(19\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + T + 5 T^{2}\) 1.5.b
\(7\) \( 1 + T + 7 T^{2}\) 1.7.b
\(11\) \( 1 + 5 T + 11 T^{2}\) 1.11.f
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(17\) \( 1 + 3 T + 17 T^{2}\) 1.17.d
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 4 T + 29 T^{2}\) 1.29.e
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 1824.h do not have complex multiplication.

Modular form 1824.2.a.h

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} - q^{5} - q^{7} + q^{9} - 5 q^{11} + 4 q^{13} - q^{15} - 3 q^{17} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 1824.h

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1824.h1 1824d1 \([0, 1, 0, -1501, 29963]\) \(-91368216064/45001899\) \(-184327778304\) \([]\) \(1536\) \(0.86694\) \(\Gamma_0(N)\)-optimal